Oxovanadium (IV) Complexes of α-Amino Acid Schiff Bases and
2,2'-Bipyridine Ligands: Synthesis, Characterization and Investigation of their Biological Potency
Md. Tariqul Islam, Md. Nur Amin Bitu, Md. Ali Asraf, Md. Faruk Hossen,
Md. Kudrat-E-Zahan*
Department of Chemistry, University of Rajshahi, Rajshahi - 6205, Bangladesh.
*Corresponding Author E-mail: kudrat.chem@ru.ac.bd
ABSTRACT:
Five new oxovanadium(IV) complexes of the type [VO(L)(bpy)], [where L= 3-hydroxybenzaldehyde-α-alanine (hb-ala), 3-hydroxybenzaldehyde-DL-phenylalanine (hb-pheala), 3-hydroxybenzaldehyde-leucine (hb-leu), 3-hydroxybenzaldehyde-glycine (hb-gly) and 3-hydroxybenzaldehyde-DL-methionine (hb-met) and bpy = 2,2´-bipyridine] have been synthesized and characterized by some physicochemical properties, molar conductance, magnetic susceptibilities measurements, elemental analysis, UV-Visible and FTIR and ESI-MS spectral studies. The molar conductance values showed that the complexes are non-electrolytic in nature. The magnetic moment values of the complexes are in accordance with the d1 electronic configuration of the VIVO2+ moiety and indicates the paramagnetic nature of the complexes. IR spectral data indicates the coordination of tridentate amino acid Schiff base ligands to the vanadyl (VO2+) ion through O, N, O-donor. ESI-MS spectral studies supports the proposed structure of the complexes. The magnetic moment value coupled with electronic spectral data suggested the distorted octahedral geometry of the complexes. All the complexes were screened for their antibacterial activity against three human pathogenic bacteria- Escherichia coli, Staphylococcus aureus and Bacillus cereus with Kanamycin (K-30) standard. The result shows that all the complexes possess to have moderate to strong potential antibacterial activity against all the tested pathogens.
Schiff bases are an important class of ligands because such ligands and their transition metal complexes have a variety of applications including biological, clinical, and analytical applications.1 The development of the field of bioinorganic chemistry has stimulated the interest in Schiff base complexes because it has been recognized that N- and S-atoms play a key role in the coordination of transition metals at the active sites of many metallobiomolecules.2,3 The importance of metal ions in biological systems is well established.
One of the most interesting features of metal-coordinated systems is the concerted spatial arrangement of the ligands around the metal ion.3-5 Among the various transition metal ions used in pharmacological studies, vanadium and its derivatives have been reported to display different biological effects including antitumor, antimicrobial, anti-hyperlipidemia, antihypertension, anti-obesity, enhancement of oxygen affinity of hemoglobin and myoglobin, insulin-enhancing effects, and so on.6-8 Vanadium complexes have also been explored for lowering of glucose levels9-12, diuretic and natriuretic effects, antitumor activity against chemical carcinogenesis in animals and malignant cell lines (in vitro). Much effort has been done for vanadyl species coordinated to organic ligands in the search of their mimetic effects in hope of developing vanadodrugs.13-15
Vanadium coordination chemistry is a topic of interest since the discoveries of it being an essential trace element for certain organisms16-19, a cofactor in haloperoxidases20,21 and nitrogenases22,23 and recently as insulin enhancing agents.24,25 Physiologically relevant oxidation states of vanadium are traditionally thought to be V(IV), as vanadyl, and V(V), often as vanadate.26 The discovery of the in vivo insulin enhancing ability of oxovanadium(IV)24,27-35 and oxovanadate (V)36-38 complexes and the ‘benchmark’ compound bis(maltolato) oxovanadium(IV), BMOV39 stimulated the search for potential vanadium compounds for the treatment of type II diabetes. Manipulation of the ligands and the various oxidation states of vanadium in an attempt to enhance the insulin mimetic behavior is a topic of recent interest.
Transition metal complexes are also of current interest because of their potential applications as probes of DNA structure, for DNA-dependent electron transfer and site-specific cleavage of nucleic acids with the aim of developing novel therapeutic and diagnostic agents.40 With regard to DNA cleavage activity, more attention has been focused on the middle to late transition metals than the earlier members of the series. Among the latter, vanadium with its three biologically relevant oxidation states (+3, +4 and +5) has begun to be recognized as DNA binding and cleaving agent. The bleomycin-vanadyl (IV) complex41 and [VO(phen) (H2O)]2+ complex42, both have been reported to induce DNA cleavage activity in the presence of H2O2. The diperoxovanadium(V) complexes with 2,2˘-bipyridine and 1,10-phenanthroline as ligands have been shown to cleave DNA on photoirradiation.43-45
Keeping these facts in view, new oxovanadium(IV) complexes of α-amino acid Schiff bases and 2,2˘-bipyridine ligands were prepared, characterized and investigated their potential antimicrobial activity.
MATERIALS AND METHODS:
Reagents and Chemicals:
All the reagents used were chemically pure grade. Solvents were purified and dried according to standard procedures.
Physical Measurements:
A Mettler PM-200 electronic balance was used to perform all the weighing operations. The melting point of all the synthesized metal complexes were recorded in an electro thermal melting point apparatus (model No.AZ6512). Conductivities of 1.0 × 10-3mol/dm3 solutions of the complexes in DMF were measured at 30°C using a WPA CM 35 conductivity meter and a dip-cell with platinized electrodes. The Sherwood Scientific Magnetic Susceptibility Balance was used to measure the magnetic moment value. Infrared spectra were recorded as KBr disc in a Shimadzu FTIR-8400 (Japan) infrared spectrophotometer, at the Central Science Laboratory of Rajshahi University, from 4000−225 cm−1. The absorbance of the complexes was recorded on SHIMUDZU Spectrophotometer (Model UV-1800). The ESI-MS spectra were performed using a Shimadzu‒Ge‒Ms‒Qp 100 EX mass spectrometer using the direct inlet system. Carbon, hydrogen and nitrogen analyses for the complexes were carried out by PerkinElmer 2400 organic elemental analyzer-II at Okayama University, Japan.
Preparation of the oxovanadium (IV) complexes:
Oxovanadium(IV) complexes were prepared by template method in which a mixture of α-amino acids, α-alanine (ala) (0.267g, 3mmol)/DL-phenylalanine (pheala) (0.495 g, 3mmol)/leucine (leu) (0.393 g, 3mmol)/glycine (gly) (0.225g, 3mmol) / DL-methionine (met) (0.447g, 3 mmol) and NaOH (0.12g, 3mmol) in 10mL methanol were added to a methanolic solution of 3-hydorxy benzaldehyde (hb) (0.366g, 3mmol) in a round bottom flask. The resulting solution was refluxed for 1hour, followed by the addition of a methanolic solution of vanadyl sulfate (0.489g, 3mmol). A light bluish precipitate was obtained after refluxing the mixture for 1 hour. To this mixture, 2,2'-bipyridine (bpy) (0.468g, 3 mmol) taken in 10mL methanol was added. The solution on further refluxing for 1 hour gave a solid precipitate. The precipitate was filtered off on a Buchner funnel, washed with methanol and finally dried in a vacuum desiccator over anhydrous CaCl2.46
VOSO4 + L + bpy → [VO(L)(bpy)]
Where, L= 3-hydroxybenzaldehyde-α-alanine (hb-ala), 3-hydroxybenzaldehyde-DL-phenylalanine (hb-pheala), 3-hydroxybenzaldehyde-leucine (hb-leu), 3-hydroxybenzaldehyde-glycine (hb-gly) and 3-hydroxybenzaldehyde-DL-methionine (hb-met) and bpy= 2,2´-bipyridine.
Oxovanadium (IV) complex of α-alanine [VO (hb-ala) (bpy)]:
Color: Dark brown, Melting point: 215 0C, Yield: 0.734 g (59%), Molar conductance (Ohm-1cm2mol-1): 10.0, Magnetic moment (µeff /B.M.): 1.57, FTIR (cm-1): 3472br, n(OH); 1619vs, n(C=O); 1544m, n(C=N); 1316m, n(C-O); 959s, n(V=O); 614m, n(V-O); 456m, n(V-N), UV-Vis. (λmax/nm): 268−301, 364, 377. Elemental analysis for [VOC20H17N3O3]: M.W. 414.31 g/mol: Calculated: C, 57.98; H, 4.14; N, 10.14 %. Found: C, 56.85; H, 4.19; N, 10.03 %.
Oxovanadium (IV) complex of DL-phenylalanine [VO(hb-pheala) (bpy)]:
Color: Orange, Melting point: 184 0C, Yield: 0.841 g (57%), Molar conductance (Ohm-1cm2mol-1): 19.3, Magnetic moment (µeff /B.M.): 1.60, FTIR (cm-1): 3435br, n(OH); 1621vs, n(C=O); 1540s, n(C=N); 1310m, n(C-O); 942s, n(V=O); 619m, n(V-O); 445m, n(V-N), UV-Vis. (λmax/nm): 267−302, 364, 376. Elemental analysis for [VOC26H21N3O3]: M.W. 490.40g/mol: Calculated: C, 63.68; H, 4.32; N, 8.57%. Found: C, 62.75; H, 4.13; N, 8.23 %.
Oxovanadium(IV) complex of leucine [VO(hb-leu)(bpy)]:
Color: Ash, Melting point: 226 0C, Yield: 0.863 g (63%), Molar conductance (Ohm-1cm2mol-1): 16.1, Magnetic moment (µeff /B.M.): 1.55,FTIR (cm-1): 3453w, n(OH); 1621w, n(C=O); 1530w, n(C=N); 1310w, n(C-O); 961s, n(V=O); 618m, n(V-O); 460w, n(V-N), UV-Vis. (λmax/nm): 268–301, 364, 374. Elemental analysis for [VOC23H23N3O3]: M.W. 456.39 g/mol: Calculated: C, 60.53; H, 5.08; N, 9.21 %. Found: C, 58.93; H, 5.11; N, 9.13 %.
Oxovanadium(IV) complex of glycine [VO(hb-gly)(bpy)]:
Color: Blackish red, Melting point: 253 0C, Yield: 0.781 g (65%), Molar conductance (Ohm-1cm2mol-1): 16.1, Magnetic moment (µeff /B.M.): 1.54, FTIR (cm-1): 3414br, n(OH); 1654s, n(C=O); 1536s, n(C=N); 1312m, n(C-O); 964s, n(V=O); 618s, n(V-O); 463m, n(V-N), UV-Vis. (λmax/nm): 270−303, 364, 375. Elemental analysis for [VOC19H15N3O3]: M.W. 400.28 g/mol: Calculated: C, 57.01; H, 3.78; N, 10.50 %. Found: C, 56.79; H, 3.83; N, 9.97 %.
Oxovanadium(IV) complex of DL-methionine [VO(hb-met)(bpy)]:
Color: Brown, Melting point: 213 0C, Yield: 0.896 g (63%), Molar conductance (Ohm-1cm2mol-1): 7.9, Magnetic moment (µeff /B.M.): 1.80, FTIR (cm-1): 3413br, n(OH); 1643s, n(C=O); 1536s, n(C=N); 1312m, n(C-O); 960vs, n(V=O); 616m, n(V-O); 452m, n(V-N), UV-Vis. (λmax/nm): 269−307, 363, 388. Elemental analysis for [VOC22H21N3O3S]: M.W. 474.43 g/mol: Calculated: C, 55.70; H, 4.46; N, 8.86 %. Found: C, 55.27; H, 4.52; N, 8.77 %.
RESULTS AND DISCUSSION:
Solubility and Melting point:
The complexes were prepared in a high yield according to the template method. All the complexes are soluble in dimethylformamide (DMF) and dimethylsulfoxide (DMSO) but insoluble in common organic solvents such as methanol, ethanol, benzene, chloroform. Melting point (184-253 0C) gives an approximate idea about the nature of the complexes and can suggest whether it is covalent or ionic.47
Elemental Analysis and Conductivity:
The molar conductance of the complexes in DMF (10-3 M solution) was measured at 30°C. The molar conductance values (7.9 to 19.3 Ohm-1cm2mol-1) indicate that all the complexes are non-electrolyte in nature. Their structures have been proposed based on the elemental analysis, conductivity and magnetic susceptibility measurements, IR spectral and UV-Visible spectral analysis.48 Also, the analytical data are in good agreement with their proposed empirical formula
Magnetic Moment and Electronic Spectra:
Magnetic susceptibility measurements have been carried out in a Sherwood Scientific magnetic susceptibility balance at room temperature (303K).49 The observed values of effective magnetic moment (meff) (1.54 to 1.80 BM) at room temperature indicated that all the complexes are paramagnetic in nature. The absorption spectra of the complexes were recorded in DMSO in the wavelength of 200–800nm range. All the complexes exhibit a band at ~375 nm due to ligand-to-metal charge-transfer (LMCT, PhO-®V) transition.50 All complexes display bands in between 267–307nm which are assignable to the π®π* transition.46
FTIR spectral studies:
The FTIR spectral data of oxovanadium(IV) complexes show a broad band in the 3413-3472 cm-1 region which is possibly due to the n(O-H) bands of hydrated water molecule in the complexes.51 The complexes exhibit n(C=O) bands in between 1619-1654 cm-1 and n(C-O) bands in 1310-1316 cm-1 region which are significantly lower than the values for respective bands of uncoordinated amino acids. Further, the appearance of n(V-O) stretching modes at around 618 cm-1 confirms the coordination of carboxylate ion to the central metal ion.52 The absence of frequency at ~3600 cm–1 for the phenolic –OH indicates the coordination of phenolic oxygen to vanadyl ion. The bands appeared at around 1540 cm-1 may be assigned to n(C=N) stretching frequency suggesting the coordination of the azomethine nitrogen to the VO2+ moiety. The coordination of azomethine nitrogen and heterocyclic nitrogen is further evident by the appearance of n(V-N) modes in the 446-463 cm-1 region.53 The present oxovanadium(IV) complexes exhibit the n(V=O) stretching frequency in the 942-964 cm-1 region characteristic of metal-oxygen multiple bond, thus ruling out the possibility of polymeric nature of the complexes since the polymeric oxovanadium(IV) complexes exhibit one or more broad absorption bands below 900 cm-1 due to bridging vanadyl group, -V-O-V-.54-56 Here, the complexes exhibit medium intense band at ~960 cm-1 indicating the monomeric nature of the complexes.57
ESI-MS Spectral Studies:
The molecular mass of the synthesized complexes are confirmed by ESI-MS spectral analysis (Figure 1). The molecular ion peak [M+] of the complexes [VO(hb-gly)(bpy)], [VO(hb-ala)(bpy)], [VO(hb-leu)(bpy)], [VO(hb-pheala)(bpy)] and [VO(hb-met)(bpy)] are m/z 400, m/z 414, m/z 456, m/z 490 and m/z 474, respectively. These corresponds to the molecular formulae of the synthesized complexes, respectively.
Figure-1: ESI-MS spectra of the complexes (a) [VO(hb-gly)(bpy)], (b) [VO(hb-ala)(bpy)], (c) [VO(hb-leu)(bpy)], (d) [VO(hb-pheala)(bpy)] and (e) [VO(hb-met)(bpy)].
On the basis of the elemental analysis, conductivity measurements, magnetic moment data, spectroscopic studies and literature review the structure of the complexes (Figure-2) could be illustrated as shown below:
Figure-2: Proposed structure of the Oxovanadium(IV) complexes.
Antibacterial Activity of the Complexes:
Antibacterial activities of the complexes are investigated by using the highly adoptable disc diffusion method.58,59 The complexes (50 µg/disc in DMSO solution) were screened for their antibacterial activity against three human pathogenic bacteria- Escherichia coli, Staphylococcus aureus and Bacillus cereus with Kanamycin (K-30) standard.60-63 The result shows that all the complexes have moderate to strong potential antibacterial activity against all the pathogenic bacteria. The result is graphically represented in Figure-3.
Figure-3: Graphical representation of the antibacterial activity of the complexes against Escherichia coli, Staphylococcus aureus and Bacillus cereus.
CONCLUSION:
The VO2+ complexes of O, N, O-donor α-amino acid Schiff bases and 2,2´-bipyridine have been synthesized and characterized. The analytical data reveal that the complexes are non-electrolytic and paramagnetic in nature. The magnetic moment values of the complexes are in accordance with the d1 electronic configuration of the VIVO2+ moiety. IR spectral data indicates the coordination of tridentate amino acid Schiff base ligands to the vanadyl (VO2+) ion. Thus, on the basis of physical properties, elemental analysis, conductivity measurements, magnetic moment data, spectroscopic studies and literature review, the structure of the complexes (Figure-2) may be proposed as distorted octahedral geometry with VO3N3 coordination environment. All the complexes were screened for their antibacterial activity against three human pathogenic bacteria- Escherichia coli, Staphylococcus aureus and Bacillus cereus with Kanamycin (K-30) standard. The result shows that all the complexes have moderate to strong potential antibacterial activity against all the tested organisms.
ACKNOWLEDGEMENT:
The authors are thankful to the Chairman, Department of Chemistry, University of Rajshahi, Rajshahi-6205, Bangladesh for the laboratory facilities.
REFERENCES:
1. X. Ran, L. Wang, D. Cao, Y. Lin and J. Hao, Applied Organometallic Chemistry, 25, 9 (2010), DOI: https://doi.org/10.1002/aoc.1680
2. M. Roy, P. S. Saha, A. K. Patra, M. Nethaji and A. R. Chakravarty, Inorganic Chemistry, 46, 4368 (2007), DOI: https://doi.org/10.1021/ic062056l
3. J. Vančo, O. Švajlenová, E. Račanská, J. Muselík and J. Valentova, Journal of Trace Elements in Medicine and Biology, 18, 155 (2004), DOI: https://doi.org/10.1016/j.jtemb.2004.07.003
4. J. A. Obaleye, J. F. Adediji and M. A. Adebayo, Molecules, 16, 5861 (2011), DOI: https://doi.org/10.3390/molecules16075861
5. X. Tai, X. Yin, Q. Chen and M. Tan, Molecules, 8, 439 (2003), DOI: https://doi.org/10.3390/80500439
6. P. Noblía, E. J. Baran, L. Otero, P. Draper, H. Cerecetto, M. González, O. E. Piro, E. E. Castellano, T. Inohara, Y. Adachi, H. Sakurai and D. Gambino, European Journal of Inorganic Chemistry, 2004(2), 322 (2004), DOI: https://doi.org/10.1002/ejic.200300421
7. P. Pattanayak, J. L. Pratihar, D. Patra, S. Mitra, A. Bhattacharyya, H. M. Lee and S. Chattopadhyay, Dalton Transactions, 46, 6220 (2009), DOI: https://doi.org/10.1039/b903352a
8. A. Messerschmidt and R. Wever, Proceedings of the National Academy of Sciences of the United States of America, 93, 392 (1996), DOI: 10.1073/pnas.93.1.392
9. A. S. Tracey and D. C. Crans, “Vanadium Compounds”, Chemistry, Biochemistry, and Therapeutic Applications, ACS Symposium Series, USA, p. 30, 711 (1998), DOI: 10.1021/bk-1998-0711
10. R. Liasko, T. A. Kabanos, S. Karkabounas, M. Malamas, A. T. Tasiopoulos, D. Stefanou, P. Collery and A. Evangelou, Anticancer Research, 18, 3609 (1998).
11. P. Prasad, P. K. Sasmal, R. Majumdar, R. R. Dighe and A. R. Chakravarty, Inorganica Chimica Acta, 363, 2743 (2010), DOI: https://doi.org/10.1016/j.ica.2010.03.016
12. P. K. Sasmal, S. Saha, R. Majumdar, R. R. Dighe and A. R. Chakravarty, Inorganic Chemistry, 49, 849 (2010), DOI: https://doi.org/10.1021/ic900701s
13. A. A. Holder, Annual Reports on the Progress of Chemistry, Section A: Inorganic Chemistry, 107, 359 (2011), DOI: https://doi.org/10.1039/C1IC90005F
14. T. Storr, K. H. Thompson and C. Orvig, Chemical Society Reviews, 35, 534 (2006), DOI: https://doi.org/10.1039/B514859F
15. S. P. Dash, S. Pasayat, Saswati, H. R. Dash, S. Das, R. J. Butcher and R. Dinda, Polyhedron, 31, 524 (2012), DOI: https://doi.org/10.1016/j.poly.2011.10.017
16. N. D. Chasteen, Vanadium in Biological Systems, Kluwer Academic Publishers: Dordrecht, The Netherlands, (1990), DOI: https://doi.org/10.1007/978-94-009-2023-1
17. H. Sigel and A. Sigel, Metal Ions in Biological Systems: Vanadium and Its Role in Life, Marcel Dekker, New York, p. 287, 31 (1995).
18. D. Rehder, Coordination Chemistry Reviews, 182, 297 (1999), DOI: https://doi.org/10.1016/S0010-8545(98)00194-5
19. H. Michibata, N. Yamaguchi, T. Uyama and T. Ueki, Coordination Chemistry Reviews, 237, 41 (2003), DOI: https://doi.org/10.1016/S0010-8545(02)00278-3
20. H. Vilter, Phytochemistry, 23, 1387 (1984), DOI: https://doi.org/10.1016/S0031-9422(00)80471-9
21. A. Butler and J. V. Walker, Chemical Reviews, 93, 1937 (1993), DOI: https://doi.org/10.1021/cr00021a014
22. R. L. Robson, R. R. Eady, T. H. Richardson, R. W. Miller, M. Hawkins and J. R. Postgate, Nature, 322, 388 (1986), DOI: https://doi.org/10.1038/322388a0
23. R. R. Eady, Coordination Chemistry Reviews, 237, 23 (2003), DOI: https://doi.org/10.1016/S0010-8545(02)00248-5
24. K. H. Thompson, J. H. McNeill and C. Orvig, Chemical Reviews, 99, 2561 (1999), DOI: https://doi.org/10.1021/cr980427c
25. K. H. Thompson and C. Orvig, Coordination Chemistry Reviews, 219-221, 1033 (2001), DOI: https://doi.org/10.1016/S0010-8545(01)00395-2
26. D. Rehder, Angewandte Chemie, 30, 148 (1991), DOI: https://doi.org/10.1002/anie.199101481
27. M. C. Cam, G. H. Cros, J. J. Serrano, R. Lazaro and J. H. McNeill, Diabetes Research and Clinical Practice, 20, 111 (1993), DOI: https://doi.org/10.1016/0168-8227(93)90004-O
28. J. H. McNeill, V. G. Yuen, H. R. Hoveyda and C. Orvig, Journal of Medicinal Chemistry, 35, 1489 (1992), DOI: https://doi.org/10.5562/cca3775
29. H. Sakurai, K. Fujii, H. Watanabe and H. Tamura, Biochemical and Biophysical Research Communications, 214, 1095 (1995), DOI: https://doi.org/10.1006/bbrc.1995.2398
30. M. Melchior, K. H. Thompson, J. M. Jong, S. J. Retting, E. Shuter, V. G Yuen, Y. Zhou, J. H. McNeill and C. Orvig, Inorganic Chemistry, 38, 2288 (1999), DOI: https://doi.org/10.1021/ic981231y
31. H. Watanabe, M. Nakai, K. Komazawa and H. Sakurai, Journal of Medicinal Chemistry, 37, 876 (1994), DOI: https://doi.org/10.1021/jm00033a002
32. H. Sakurai, K. Tsuchiya, M. Nukatsuka, J. Kawada, S. Ishikawa, H. Yoshida and M. Komatsu, Journal of Clinical Biochemistry and Nutrition, 8, 193 (1990), DOI: https://doi.org/10.3164/jcbn.8.193
33. L. C. Y. Woo, V. G. Yuen, K. H. Thompson, J. H. McNeill and C. Orvig, Journal of Inorganic Biochemistry, 76, 251 (1999), DOI: https://doi.org/10.1016/S0162-0134(99)00152-X
34. J. Li, G. Elberg, D. C. Crans and Y. Shechter, Biochemistry, 35, 8314 (1996), DOI: https://doi.org/10.1021/bi960209i
35. B. A. Reul, S. S. Amin, J. P. Buchet, L. N. Ongemba, D. C. Crans and S. M. Brichard, British Journal of Pharmacology, 126, 467 (1999), DOI: https://doi.org/10.1038/sj.bjp.0702311
36. P. Buglyo, D. C. Crans, E. M. Nagy, R. L. Lindo, L. Yang, J. J. Smee, W. Jin, L. H. Chi, M. E. Godzala III and G. R. Willsky, Inorganic Chemistry, 44, 5416 (2005), DOI: 10.1021/ic048331q
37. K. Kanamori, K. Nishida, N. Miyata, K. Okamoto, Y. Miyoshi, A. Tamura and H. Sakurai, Journal of Inorganic Biochemistry, 86, 649 (2001), DOI: https://doi.org/10.1016/S0162-0134(01)00227-6
38. B. Song, N. Aebischer and C. Orvig, Inorganic Chemistry, 41, 1357 (2002), DOI: https://doi.org/10.1021/ic0111684
39. M. Melchior, S. J. Rettig, B. D. Liboiron, K. H. Thompson, V. G. Yuen, J. H. McNeill and C. Orvig, Inorganic Chemistry, 40, 4686 (2001), DOI: https://doi.org/10.1021/ic000984t
40. K. E. Erkkila, D. T. Odom, J. K. Barton, Chemical Reviews, 99, 2777 (1999), DOI: http://dx.doi.org/10.1021/cr9804341
41. J. Kuwahara, T. Suzuki and Y. Sugiura, Biochemical and Biophysical Research Communications, 129, 368 (1985), DOI: https://doi.org/10.1016/0006-291X(85)90160-3
42. H. Sakurai, H. Tamura and K. Okatani, Biochemical and Biophysical Research Communications, 206, 133 (1995), DOI: https://doi.org/10.1006/bbrc.1995.1019
43. M. Sam, J. H. Hwang, G. Chanfreau and M. M. Abu-Omar, Inorganic Chemistry, 43, 8447 (2004), DOI: https://doi.org/10.1021/ic0486419
44. D. W. J. Kwong, O. Y. Chan, R. N. S. Wong, S. M. Musser, L. Vaca and S. I. Chan, Inorganic Chemistry, 36, 1276 (1997), DOI: https://doi.org/10.1021/ic960909b
45. C. Hiort, J. Goodisman and J. C. Dabrowiak, Biochemistry, 35, 12354 (1996), DOI: https://doi.org/10.1021/bi9606253
46. P. K. Sasmal, A. K. Patra, M. Nethaji and A. R. Chakravarty, Inorganic Chemistry, 46, 11112 (2007), DOI: https://doi.org/10.1021/ic7011793
47. V. Arun, N. Sridevi, P. P. Robinson, S. Manju, K. K. M. Yusuff, Journal of Molecular Catalysis A: Chemical, 304, 191 (2009), DOI: https://doi.org/10.1016/j.molcata.2009.02.011
48. S. I. Al-Resayes, M. Shakir, A. Abbasi, K. M. Y. Amin and A. Lateef, Spectrochimica Acta- Part A, 93, 86 (2012), DOI: https://doi.org/10.1016/j.saa.2012.02.099
49. A. Kriza, L. Mitu and N. Stanica, Revista de Chimie, 56, 137 (2005).
50. S. K. Dutta, S. B. Kumar, S. Bhattacharyya, E. R. T. Tiekink and M. Chaudhury, Inorganic Chemistry, 36, 4954 (1997), DOI: https://doi.org/10.1021/ic970113s
51. M. R. Maurya, S. Khurana, C. Schulzke and D. Rehder, European Journal of Inorganic Chemistry, 2001(3), 779 (2001).
52. S. L. Dutta and R. A. Lal, Indian Journal of Chemistry -Section A, 27, 225 (1988).
53. S. Singh, V. Chakravorty and C. K. Das, Indian Journal of Chemistry -Section A, 28, 256 (1989).
54. P. V. Rao, R. N. Rao and M. C. Ganorkar, Indian Journal of Chemistry -Section A, 27, 73 (1988).
55. M. N. A. Bitu, M. S. Hossain, M. A. Asraf, M. F. Hossen and M. Kudrat-E-Zahan, Afr. J. Pharm. Sci., 1(1): 47-53, (2021) DOI:10.51483/AFJPS.1.1.2021.47-53.
56. M. N. A. Bitu, M. S. Hossain, M. A. Asraf, M. F. Hossen, M. Kudrat-E-Zahan, Croat. Chem. Acta., 93(3):1926, (2021)DOI: https://doi.org/10.5562/cca3775.
57. D. N. Sathyanarayana and C. C. Patel, Journal of Inorganic and Nuclear Chemistry, 30, 207 (1968), DOI: https://doi.org/10.1016/0022-1902(68)80082-X
58. K. A. Elachi, M. S. Hossain, M. N. A. Bitu, A. A. S. M. Zahid, R. K. Mohapatra, M. A. Mannan, C. M. Zakaria and M. Kudrat-E-Zahan, Journal of Chemical, Biological and Physical Sciences-Section A: Chemical Sciences, 9, 201 (2019), DOI: https://doi.org/0.24214/jcbps.A.9.4.20118.]
59. N. A. Bitu, S. Hossain, N. Islam, A. Kader, M. S. Islam, M. M. Haque, F. Hossen, A. Asraf, R. K. Mohapatra and Kudrat-E-Zahan, Russian Journal of General Chemistry, 90, 1553 (2020), DOI: https://doi.org/10.1134/S1070363220080253
60. M. M. Ali, M. N. A. Bitu, M. S. Hossain, M. F. Hossen, M. A. Asraf, M. A. Farooque and M. Kudrat-E-Zahan, Asian Journal of Chemical Sciences, 8, 15 (2020), DOI: 10.9734/AJOCS/2020/v8i119032
61. M. E. Haque, M. Z. Rahman, M. M. Pervin, M. H. Kabir, M. S. Imran, K. M. K. B. Ferdaus and M. Khalekuzzaman, Pakistan Journal of Biological Sciences, 8, 1746 (2005), DOI: 10.3923/pjbs.2005.1746.1750
62. M. M. Ali, M. N. A. Bitu, M. S. Hossain, M. F. Hossen, M. A. Asraf, M. M. Haque, M. A. Farooque, M. Kudrat-E-Zahan, New Materials, Compounds and Applications, 4, 173 (2020).
63. M. M. Ali, M. N. A. Bitu, M. S. Hossain, M. F. Hossen, M. A. Asraf, M. A. Farooque, M. M. Hossain, M. Kudrat-E-Zahan, Asian Journal of Chemical Sciences, 8, 1 (2020), DOI: 10.9734/AJOCS/2020/v8i219036
Received on 21.02.2024 Modified on 19.03.2024
Accepted on 08.04.2024 ©AJRC All right reserved
Asian J. Research Chem. 2024; 17(2):97-102.