0974-4150 (Online)
0974-4169 (Print)

Author(s): Kelvin Kibet, Esther W. Nthiga, Moses A. Ollengo


DOI: 10.52711/0974-4150.2023.00056   

Address: Kelvin Kibet1*, Esther W. Nthiga2, Moses A. Ollengo3
1,2,3Chemistry Department, Dedan Kimathi University of Technology, Private Bag – 10143, Dedan Kimathi, Nyeri – Kenya.
*Corresponding Author

Published In:   Volume - 16,      Issue - 5,     Year - 2023

Heavy metals pollution of water poses a major environmental challenge due to its antagonistic effects. They are not biodegraded and tend to accumulate in human body to toxic levels linked to some health effects. Therefore, there is need for their removal in water. Technologies that exist such as membrane filtration are limited by their high operation cost. However, adsorption is a cheap, efficient, and easy technique of removal of pollutants from wastewater. There are limited information available on value addition of plastic waste for application as adsorbents. Global production of polypropylene amount to about 56 million metric tons with a large percent of these going to waste. Application of polypropylene plastic waste was explored in this study for remediation of Cd2+ and Cr3+ ions from model solution. This was achieved by first chemically modifying the plastic by use of hydrogen peroxide and hydrochloric acid then applying it for adsorption of Cd2+ and Cr3+ ions. The chemically modified plastic waste was characterized and applied for equilibrium adsorption batch experiments. The images obtained from SEM analysis confirmed availability of pores in the adsorbent which are critical for Cd2+ and Cr3+ ions adsorption. The FTIR results confirmed the attachment of hydroxyl groups on the adsorbent which are vital for removal of heavy metals. Effect of adsorbent dosage, contact time, solution pH and initial metal ion concentration were investigated and the concentration of the resulting filtrate after adsorption determined using ICP-AES. The results from optimization experiments showed that Cd2+ and Cr3+ ions adsorption was optimal at initial metal ion concentration values between 15mg/L and 20mg/L and contact time of 45 mins and 60 mins respectively. Optimum adsorbent mass of 0.1g and optimal pH values between 4.5 and 5.5. Equilibrium experimental results showed adsorption capacities of 7.395mg/g (Cd2+) and 6.225mg/g (Cr3+) for Langmuir isotherm model with R2?0.99 indicating chemisorption process.

Cite this article:
Kelvin Kibet, Esther W. Nthiga, Moses A. Ollengo. Removal of Cd2+ and Cr3+ ions from Aqueous Solution by Modified Polypropylene Plastic Waste: Equilibrium Study. Asian Journal of Research in Chemistry. 2023; 16(5):349-7. doi: 10.52711/0974-4150.2023.00056

Kelvin Kibet, Esther W. Nthiga, Moses A. Ollengo. Removal of Cd2+ and Cr3+ ions from Aqueous Solution by Modified Polypropylene Plastic Waste: Equilibrium Study. Asian Journal of Research in Chemistry. 2023; 16(5):349-7. doi: 10.52711/0974-4150.2023.00056   Available on:

1.    Obinna I.B, Ebere E.C. A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal. 2019; 2(03):5-38.
2.    Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020; 6(9):04691. doi:10.1016/j.heliyon.2020.e04691
3.    Verma R, Dwivedi P. Heavy metal water pollution- A case study. Recent Research in Science and Technology. 2013; 5(5):3.
4.    Aderinola O, Clarke E, Olarinmoye O, Kusemiju V, Anatekhai M. Heavy Metals in Surface Water, Sediments, Fish and Perwinkles of Lagos Lagoon. 2009; 5(5):609-617.
5.    Bangaraiah P. Kinetic and Equilibrium Study on Biosorption of Chromium using Tamarind Fruit Shell. Research Journal of Pharmacy and Technology. 2020; 13(5):2340-2344. doi:10.5958/0974-360X.2020.00421.7
6.    Sharma SK, Petrusevski B, Amy G. Chromium removal from water: a review. Journal of Water Supply: Research and Technology-Aqua. 2008; 57(8):541-553. doi:10.2166/aqua.2008.080
7.    Renu, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination. 2016; 7(4):387-419. doi:10.2166/wrd.2016.104
8.    Tumolo M, Ancona V, De Paola D, et al. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. IJERPH. 2020; 17(15):5438. doi:10.3390/ijerph17155438
9.    Wu Y, Zhang S, Guo X, Huang H. Adsorption of chromium (III) on lignin. Bioresource Technology. 2008; 99(16):7709-7715. doi:10.1016/j.biortech.2008.01.069
10.    Sahare A.B, Gharde B.D. Adsorption Studies of Co (II) from Aqueous Solution using Mangifera indica Bark Substrate. Asian Journal of Research in Chemistry. 2017; 10(3):259-263. doi:10.5958/0974-4150.2017.00041.4
11.    Das T.K, Poater A. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int J Mol Sci. 2021; 22(24): 13383. doi:10.3390/ijms222413383
12.    Patterer, Bavasso I., Sambeth J., Medici F. Cadmium removal from aqueous solution by adsorption on spent coffee grounds. Chemical Engineering Transactions. 2017; 60: 157-162. doi:10.3303/CET1760027
13.    Abhilash D.P, Rose S.V, Indirani B. Removal of cadmium (II) from aqueous solution using coffee powder - a kinetic study. Asian Journal of Research in Chemistry. 2018; 11(2):360-364.
14.    Gafur N, Sakakibara M, Sano S, Sera K. A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water. 2018; 10(11):1507. doi:10.3390/w10111507
15.    Wołowiec M, Komorowska-Kaufman M, Pruss A, Rzepa G, Bajda T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals. 2019; 9(8):487. doi:10.3390/min9080487
16.    Sumalatha B, Narayana A, Miriyala V, Koti B, Chintala P. Removal of Cd (II) from Synthetic Medium on to Gulmohar Fruit Shell: Characterization, Equilibrium and Kinetic studies. Research Journal of Pharmacy and Technology. 2021; 14(7): 3763-3768. doi:10.52711/0974-360X.2021.00651
17.    Ratna S, Ubale M, Jagdish B, Balaji M. Adsorption of Nickel (II), Copper (II) and Iron (III) on Kammoni Leaf Powder: A Case Study. Asian Journal of Research in Chemistry. 2011; 4(1):100-103.
18.    Hardani P, Sugijanto N, Kartosentono S. Heavy metals bioremediation by shells dust and chitosan derived from Belamya javanica Snail, an Eco-friendly biosorbent. Research Journal of Pharmacy and Technology. 2021; 14(3):1555-1560. doi:10.5958/0974-360X.2021.00274.2
19.    Popuri A, Guttikonda P. Use of Agricultural Waste (Fly Ash) for Removal of Nickel Ions from Aqueous Solutions. Research Journal of Pharmacy and Technology. 2015; 8(12):1665-1668. doi:10.5958/0974-360X.2015.00300.5
20.    Lee C.G, Jeon J.W, Hwang M.J. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin. Chemosphere. 2015; 130:59-65. doi:10.1016/j.chemosphere.2015.02.055
21.    Maneechakr P, Karnjanakom S. Adsorption behaviour of Fe (II) and Cr (VI) on activated carbon: Surface chemistry, isotherm, kinetic and thermodynamic studies. The Journal of Chemical Thermodynamics. 2017; 106:104-112.
22.    Mabrouk S, Bebba A.A, Kamarchou A, Zobeidi A. Adsorption capacity of pollutants by using local clay mineral from urban wastewater Touggourt (South-East Algeria). Asian Journal of Research in Chemistry. 2020; 13(2):85-90. doi:10.5958/0974-4150.2020.00018.8
23.    Abdulsahib H, Taobi A, Hashim S. Removal of Heavy metals from Wastewater by Novel Adsorbent based on Chitosan and Lignin. Research Journal of Science and Technology. 2015; 7(1):35-46. doi:10.5958/2349-2988.2015.00007.8
24.    Sharma D. Removal of heavy metals from water/wastewater using agricultural and industrial by-products as adsorbents. Asian Journal of Research in Chemistry. 2011; 4(9):1432-1439.
25.    Lingamdinne L.P, Yang J.K, Chang Y.Y, Koduru J.R. Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy. 2016; 165:81-89. doi:10.1016/j.hydromet.2015.10.022
26.    Alsabri A, Tahir F, Al-Ghamdi S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today. 2022; 56:2245-2251. doi:10.1016/j.matpr.2021.11.574
27.    Ncube L.K, Ude A.U, Ogunmuyiwa E.N, Zulkifli R, Beas I.N. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling. 2021; 6(1):12. doi:10.3390/recycling6010012
28.    Alabi O.A, Ologbonjaye K.I, Awosolu O, Alalade O.E. Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess. 2019; 5(21):1-13.
29.    Hernández-Aguirre O.A, Núñez-Pineda A, Tapia-Tapia M, Gómez Espinosa R.M. Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal. Journal of Chemistry. 2016; 2016: 2742013. doi:10.1155/2016/2742013
30.    Goedecke C, Stollin U, Hering S. A First Pilot Study on the Sorption of Environmental Pollutants on Various Microplastic Materials. Journal of Environmental Analytical Chemistry. 2017; 4(1):1000191. doi:10.4172/2380-2391.1000191
31.    Mbugua G, Mwangi I, Wanjau R, Ollengo M.A, Nthiga E.W, Ngila J.C. Facile removal of Fluoride Ions from water using Triethylamine Modified Polyethylene Adsorbent. Asian Journal of Research in Chemistry. 2020; 13(1):60.
32.    Uphade B, Gadhave A, Gaikar R. Removal of copper (II) from aqueous solution by modified agricultural waste materials. Asian Journal of Research in Chemistry. 2016; 9(9):409-412. doi:10.5958/0974-4150.2016.00061.4
33.    Yakout A, Shaker M, Al-wakeel K, Alshitari W. Lauryl sulfate@magnetic graphene oxide nanosorbent for fast methylene blue recovery from aqueous solutions. Journal of Dispersion Science and Technology. 2018; 40:1-9. doi:10.1080/01932691.2018.1477604
34.    Lawrance S, Bajpai J, Bajpai A.K. Designing Fixed Bed Column and Batch Studies of Chitosan Nanoparticles for Defluoridation of Drinking Water. Journal of Dispersion Science and Technology. 2011; 32:1256-1265. doi:10.1080/01932691.2010.505785
35.    Alemu A, Mamaru B, Habtu N. Adsorption of chromium (III) from aqueous solution using vesicular basalt rock. Cogent Environmental Science. 2019; 5:1650416. doi:10.1080/23311843.2019.1650416
36.    Alam S, Ullah B, Khan MS. Adsorption Kinetics and Isotherm Study of Basic Red 5 on Synthesized Silica Monolith Particles. Water. 2021; 13(20):2803. doi:10.3390/w13202803
37.    Mustapha S, Shuaib D.T, Ndamitso M.M. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizia lebbeck pods. Appl Water Sci. 2019; 9(6):142. doi:10.1007/s13201-019-1021-x
38.    Ndung’u S, Wanjau R, Nthiga E, Ndiritu J, Mbugua G. Complexation equilibrium studies of Cu2+, Cd2+ and Pb2+ ions onto ethylenediamine quaternised Artocarpus heterophyllus L. seeds from aqueous solution. IOSR Journal of Applied Chemistry. 2020; 13:1-12. doi:10.9790/5736-1312010112
39.    Poornima C, Uthamballi Shivanna M, Sathyanarayana S. Influence of basalt fibre and maleic anhydride on the mechanical and thermal properties of polypropylene. Polymer Composites. 2023; 44(1):57-68. doi:10.1002/pc.27026
40.    Nandiyanto A, Oktiani R, Ragadhita R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology. 2019; 4:97-118. doi:10.17509/ijost.v4i1.15806
41.    Sienkiewicz A, Czub P. The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol A. Industrial Crops and Products. 2015; 83. doi:10.1016/j.indcrop.2015.11.071
42.    Khan S.A, Khan S.B, Khan L.U, Farooq A, Akhtar K, Asiri A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In: Sharma SK, ed. Handbook of Materials Characterization. Springer International Publishing; 2018:317-344. doi:10.1007/978-3-319-92955-2_9
43.    Azam M, Wabaidur S.M, Khan M.R, Al-Resayes S.I, Islam M.S. Removal of Chromium (III) and Cadmium (II) Heavy Metal Ions from Aqueous Solutions Using Treated Date Seeds: An Eco-Friendly Method. Molecules. 2021; 26(12):3718. doi:10.3390/molecules26123718
44.    Oloo C, Nthiga E, Muthakia G, Onyancha D. Removal of Cr3+ From Tannery Wastewater Using Unmodified And Acid-Modified Arabica Coffee Husk Adsorbent. International Journal of Research and Innovation in Applied Sciences. 2021; 6(2):38-45.
45.    Nthiga E.W, Ng’ang’a S, Nduta R, Kibet K. Removal of Cr3+ ions from a model solution by HCl treated Artocarpus heterophyllus L. seeds: Equilibrium and Kinetic study. International Journal of Research and Innovation in Applied Sciences. 2021; 6(2):38-45.
46.    Mwaniki M, Onyatta J, Yusuf A. Characterization of Water Hyacinth Powder Using FTIR Spectroscopy and the Adsorption Behaviour of Pb2+, Cd2+, Zn2+, Ni2+ and Cr2+ in Aqueous Solution. Asian Journal of Applied Chemistry Research. 2020; 6(1):47-55. doi:10.9734/ajacr/2020/v6i130151
47.    Zeng G, He Y, Liang D. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Microcystis aeruginosa. Int J Environ Res Public Health. 2022; 19(21):13867. doi:10.3390/ijerph192113867
48.    Mashkoor F, Nasar A, Inamuddin, Asiri A.M. Exploring the Reusability of Synthetically Contaminated Wastewater Containing Crystal Violet Dye using Tectona grandis Sawdust as a Very Low-Cost Adsorbent. Sci Rep. 2018; 8(1):8314. doi:10.1038/s41598-018-26655-3
49.    Baz A, Hendi I, Dohdoh A, Srour M. Adsorption of High Chromium Concentrations from Industrial Wastewater Using Different Agricultural Residuals. J Environ Treat Tech. 2020; 9(1):122-138. doi:10.47277/JETT/9(1)138
50.    Padmavathy K.S, Madhu G, Haseena P.V. A study on Effects of pH, Adsorbent Dosage, Time, Initial Concentration and Adsorption Isotherm Study for the Removal of Hexavalent Chromium (Cr (VI)) from Wastewater by Magnetite Nanoparticles. Procedia Technology. 2016; 24: 585-594. doi:10.1016/j.protcy.2016.05.127
51.    Edet U.A, Ifelebuegu A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes. 2020; 8(6):665. doi:10.3390/pr8060665
52.    Nthiga E.W. Efficacy and Kinetics of Adsorption of Single and Multiple Heavy Metal Cations from  Aqueous Solutions by Fruit Waste Products (Doctoral dissertation, Kenyatta University). Published online 2016:173.
53.    Aldawsari A, Khan M, Hameed B. Mercerized mesoporous date pit activated carbon—A novel adsorbent to sequester potentially toxic divalent heavy metals from water. Plos One. 2017; 12(9):0184493. doi:10.1371/journal.pone.0184493
54.    Li J, Dong X, Liu X. Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents. Sustainability. 2022; 14(23):15579. doi:10.3390/su142315579
55.    Hajji S, Mzoughi N. Kinetic, equilibrium and thermodynamic studies for the removal of lead ions from aqueous solutions by using low cost adsorbents: a comparative study. IOSR J. Appl. Chem. 2018; 11:12-24. doi:10.9790/5736-1107011224
56.    Patrulea V, Negrulescu A, Stef - Mincea M, Pitulice L, Otilia B, Ostafe V. Optimization of the Removal of Copper (II) Ions from Aqueous Solution on Chitosan and Cross-Linked Chitosan Beads. Bio Resources. 2013; 8(1): 1147-1165. doi:10.15376/biores.8.1.1147-1165
57.    Naseem K, Huma R, and Shahbaz A. Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study. Zeitschrift fur Physikalische Chemie. 2018; 233(2):201-223. doi:10.1515/zpch-2018-1182

Recomonded Articles:

Author(s): Bhavna V. Mohite

DOI:         Access: Open Access Read More

Author(s): Vikram R. Jadhav

DOI: 10.5958/0974-4150.2020.00043.7         Access: Open Access Read More

Author(s): Mohammad Rehan, Dhirendra Kumar Bharati, Sushmita Banerjee, Ravindra Kumar Gautam, Mahesh Chandra Chattopadhyaya

DOI: 10.5958/0974-4150.2017.00005.0         Access: Open Access Read More

Author(s): Jeevan Jyoti Mohindru, Umesh Kumar Garg, Rajni Gupta

DOI: 10.5958/0974-4150.2017.00069.4         Access: Open Access Read More

Author(s): Nandkishor Telkapalliwar, Vidyadhar Shivankar

DOI: 10.5958/0974-4150.2017.00009.8         Access: Open Access Read More

Author(s): Asma S.K, Rashid M.A, Qasim M.A, Shoeb A.A, Afzal H, Mustehasan, Garg G.P.

DOI:         Access: Open Access Read More

Author(s): A.K. Meena, M.M. Rao, Kiran Sharma, Ajay Yadav, Uttam Singh, Amit

DOI:         Access: Open Access Read More

Author(s): R Manoj Prabakaran, V Niranjan, VM Seenivasan, S Thenesh Kumar

DOI:         Access: Open Access Read More

Author(s): Sarita Yadav, D.K. Tyagi , O.P. Yadav

DOI:         Access: Open Access Read More

Author(s): Arjun Singh, Ajay Kr. Meena, M.M. Rao, Sudeep Mishra, M.M. Padhi, Ramesh Babu

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles

Recent Articles