Author(s):
Ashish Kumar, Alka Singh, Bhaskar Kumar Gupta
Email(s):
singhalka7160@gmail.com
DOI:
10.52711/0974-4150.2025.00031
Address:
Ashish Kumar, Alka Singh*, Bhaskar Kumar Gupta*
School of Pharmacy and Research, People’s University, Bhanpur, 462037 Bhopal, M.P, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
The COVID-19 pandemic has placed unexpected strains on all aspects of human life, necessitating the rapid evaluation of various approaches to achieving protective immunity. In response, significant efforts have been dedicated to developing an effective vaccine, leading to a global race for vaccine advancement. To combat COVID-19, nations must prioritize widespread vaccination with a safe and effective vaccine. However, concerns about potential long-term adverse effects have contributed to public apprehension regarding vaccine use. The safety profile of a vaccine plays a crucial role in public confidence and overall vaccine uptake. This article reviews the latest primary literature on the adverse effects of different COVID-19 vaccines worldwide.
Cite this article:
Ashish Kumar, Alka Singh, Bhaskar Kumar Gupta. A Systematic Review - Adverse Effect of Covid-19 Vaccine. Asian Journal of Research in Chemistry.2025; 18(3):194-2. doi: 10.52711/0974-4150.2025.00031
Cite(Electronic):
Ashish Kumar, Alka Singh, Bhaskar Kumar Gupta. A Systematic Review - Adverse Effect of Covid-19 Vaccine. Asian Journal of Research in Chemistry.2025; 18(3):194-2. doi: 10.52711/0974-4150.2025.00031 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2025-18-3-13
REFERENCES:
1. Almutairi MA. The coronavirus disease 2019 (COVID-19) outbreak: Challenges for pediatric dentistry. J Res Med Dent Sci. 2021; 9:116-121
2. https://www.who.int/emergencies/diseases/ novel-coronavirus-2019/question-and-answers hub/q-a-detail/coronavirus-disease-covid-19
3. Nagargoje B, Palod A, Dixi J, et al. Seroprevalence of COVID-19 in a city in India: A community based cross-sectional study. J Res Med Dent Sci. 2021; 9: 48-53
4. Singh DK, Garg A, Bagri S, et al. COVID-19 presentation and effect of associated co morbidities on severity of illness at a dedicated COVID hospital in North India. J Res Med Dent Sci. 2021; 9: 49-54.
5. Tanu Singhal. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020; 87: 281–286.
6. Dane S, Akyuz M. Symptom spectrum and the evaluation of severity and duration of symptoms in patients with COVID-19. J Res Med Dent Sci. 2021; 9: 262-266.
7. Alisha Ishrath, Mohammed Mazher Ahmed, Namarata Pal, Siri Muppidi, Covid-19 (Pandemic): A Review Article, J Res Med Dent Sci. 2021; 9(10): 281-288.
8. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2001468.
9. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2001737.
10. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2001316.
11. World Health Organization. Situation reports. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Accessed 22 Feb 2020.
12. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)30360-3.
13. Cheng ZJ, Shan J. 2019 novel coronavirus: where we are and what we know. Infection. 2020: 1–9. https://doi.org/10.1007/s15010-020-01401-y.
14. https://en.wikipedia.org/wiki/Signs_and_symptoms
15. https://en.wikipedia.org/wiki/Coronavirus#/media/File:Vaccines-08-00587-g002-A.png
16. Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. (August 2021). Airborne transmission of respiratory viruses. Science. 373(6558). doi:10.1126/ science.abd9149. PMC 8721651. PMID 34446582.
17. Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R (May 2021). Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 397(10285): 1603–1605. doi:10.1016/s0140-6736(21)00869-2. PMC 8049599. PMID 33865497.
18. Mittal R (2020). The flow physics of COVID-19". Journal of Fluid Mechanics. 894. arXiv:2004.09354. Bibcode: 2020JFM...894F...2M. doi:10.1017/jfm.2020.330. S2CID 215827809.
19. He X, Lau EH, Wu P, Deng X, Wang J, Hao X, et al. (September 2020). Author Correction: Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine. 26(9): 1491–1493. doi:10.1038/s41591-020-1016-z. PMC 7413015. PMID 32770170. S2CID 221050261.
20. Clinical Questions about COVID-19: Questions and Answers. Centers for Disease Control and Prevention. 4 March 2021
21. Scientific Brief: SARS-CoV-2 Transmission. Centers for Disease Control and Prevention. 7 May 2021. Retrieved 8 May 2021
22. Public Health Agency of Canada (3 November 2020). COVID-19: Main modes of transmission. aem. Retrieved 18 May 2021. Transmission of COVID-19. European Centre for Disease Prevention and Control. 26 January 2021. Retrieved 18 May 2021
23. Biswas Riddhideep, Pal Anish, Pal Ritam, Sarkar Sourav, Mukhopadhyay Achintya (2022). Risk assessment of COVID infection by respiratory droplets from cough for various ventilation scenarios inside an elevator: An OpenFOAM-based computational fluid dynamics analysis. Physics of Fluids. 34(1): 013318. arXiv:2109.12841. Bibcode:2022PhFl...34a3318B. doi:10.1063/5.0073694. PMC 8939552. PMID 35340680. S2CID 245828044.
24. https://en.wikipedia.org/wiki/COVID-19#/media/File:Transmission_of_COVID-19.jpg
25. https://neubergdiagnostics.com/blog/all-you need-to-know-about-covid-19-diagnosis/
26. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Bruggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75: 1564-81.
27. Guner R, Hasanoglu I, Aktaş F. COVID-19: Prevention and control measures in community. Turk J Med Sci 2020; 50: 571–577.
28. World Health Organization (WHO) (2020). Advice on the use of masks in the context of COVID-19: interim guidance, 6 April 2020 [online]. Website https://apps.who.int/iris/ handle/10665/331693 [accessed 12 April 2020].
29. Cascella M, Rajnik M, Aleem A, et al. Features, evaluation, and treatment of coronavirus (COVID-19). Stat Pearls 2021.
30. 34.Wibawa T. COVID-19 vaccine research and development: Ethical issues. Trop. Med. Int. Health. 2021; 26: 14–19. doi: 10.1111/tmi.13503. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
31. Pollard A.J., Bijker E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021; 21: 83–100. doi: 10.1038/s41577-020-00479-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
32. Lahariya C. Vaccine epidemiology: A review. J. Fam. Med. Prim. Care. 2016; 5: 7–15. doi: 10.4103/2249-4863.184616. [DOI] [PMC free article] [PubMed] [Google Scholar]
33. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad. Med. J. 2021; 97: 312–320. doi: 10.1136/postgradmedj-2020-138577. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
34. Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020; 5: 18. doi: 10.1038/s41541-020-0170-0. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
35. Bartsch S.M., O’Shea K.J., Ferguson M.C., Bottazzi M.E., Wedlock P.T., Strych U., McKinnell J.A., Siegmund S.S., Cox S.N., Hotez P.J., et al. Vaccine Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an Epidemic as the Sole Intervention. Am. J. Prev. Med. 2020; 59: 493–503. doi: 10.1016/j.amepre.2020.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
36. Soleimanpour S., Yaghoubi A. COVID-19 vaccine: Where are we now and where should we go? Expert Rev. Vaccines. 2021; 20: 23–44. doi: 10.1080/14760584.2021.1875824. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
37. Altawalah H. Antibody Responses to Natural SARS-CoV-2 Infection or after COVID-19 Vaccination. Vaccines. 2021; 9: 910. doi: 10.3390/vaccines9080910. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
38. Lundstrom K. The Current Status of COVID-19 Vaccines. Front. Genome Ed. 2020; 2: 579297. doi: 10.3389/fgeed.2020.579297. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
39. Rauch S., Jasny E., Schmidt K.E., Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018; 9: 1963. doi: 10.3389/fimmu.2018.01963. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
40. Yadav T., Srivastava N., Mishra G., Dhama K., Kumar S., Puri B., Saxena S.K. Recombinant vaccines for COVID-19. Hum. Vaccines Immunother. 2020; 16: 2905–2912. doi: 10.1080/21645515.2020.1820808. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
41. Walsh E.E., Frenck R.W., Jr., Falsey A.R., Kitchin N., Absalon J., Gurtman A., Lockhart S., Neuzil K., Mulligan M.J., Bailey R., et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 2020; 383: 2439–2450. doi: 10.1056/NEJMoa2027906. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
42. Coppeta L., Balbi O., Grattagliano Z., Mina G.G., Pietroiusti A., Magrini A., Bolcato M., Trabucco Aurilio M. First Dose of the BNT162b2 mRNA COVID-19 Vaccine Reduces Symptom Duration and Viral Clearance in Healthcare Workers. Vaccines. 2021; 9: 659. doi: 10.3390/vaccines9060659. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
43. Lamb Y.N. BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs. 2021; 81: 495–501. doi: 10.1007/s40265-021-01480-7. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
44. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Pérez Marc G., Moreira E.D., Zerbini C., et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020; 383: 2603–2615. doi: 10.1056/NEJMoa2034577. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
45. Badiani A.A., Patel J.A., Ziolkowski K., Nielsen F. Pfizer: The miracle vaccine for COVID-19? Public Health Pract. 2020; 1: 100061. doi: 10.1016/j.puhip.2020.100061. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
46. Uddin M.N., Roni M.A. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines. 2021; 9: 1033. doi: 10.3390/vaccines9091033. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
47. Callaway E. Pfizer COVID vaccine protects against worrying coronavirus variants. Nature. 2021; 593: 325–326. doi: 10.1038/d41586-021-01222-5. [DOI] [PubMed] [Google Scholar][Ref list]
48. Oliver S.E., Gargano J.W., Marin M., Wallace M., Curran K.G., Chamberland M., McClung N., Campos-Outcalt D., Morgan R.L., Mbaeyi S., et al. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Moderna COVID-19 Vaccine-United States. MMWR Morb. Mortal. Wkly Rep. 2020; 69: 1653–1656. doi: 10.15585/mmwr.mm695152e1. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
49. Corbett K.S., Edwards D.K., Leist S.R., Abiona O.M., Boyoglu-Barnum S., Gillespie R.A., Himansu S., Schäfer A., Ziwawo C.T., DiPiazza A.T., et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020; 586: 567–571. doi: 10.1038/s41586-020-2622-0. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
50. Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C., Makhene M., Coler R.N., McCullough M.P., Chappell J.D., Denison M.R., Stevens L.J., et al. An mRNA vaccine against SARS-COV-2—Preliminary report. N. Engl. J. Med. 2020; 383: 1920–1931. doi: 10.1056/NEJMoa2022483. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
51. Fernandes A., Chaudhari S., Jamil N., Gopalakrishnan G. COVID-19 Vaccine. Endocr. Pract. 2021; 27: 170–172. doi: 10.1016/j.eprac.2021.01.013. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
52. Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., Diemert D., Spector S.A., Rouphael N., Creech C.B., et al. COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021; 384: 403–416. doi: 10.1056/NEJMoa2035389. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
53. Chemaitelly H., Yassine H.M., Benslimane F.M., Al Khatib H.A., Tang P., Hasan M.R., Malek J.A., Coyle P., Ayoub H.H., Al Kanaani Z., et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat. Med. 2021; 27: 1614–1621. doi: 10.1038/s41591-021-01446-y. [DOI] [PubMed] [Google Scholar][Ref list]
54. Creech C.B., Walker S.C., Samuels R.J. SARS-CoV-2 Vaccines. JAMA. 2021; 325: 1318–1320. doi: 10.1001/jama.2021.3199. [DOI] [PubMed] [Google Scholar][Ref list]
55. Soiza R.L., Scicluna C., Thomson E.C. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing. 2020; 50: 279–283. doi: 10.1093/ageing/afaa274. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
56. Zhang Y., Zeng G., Pan H., Li C., Hu Y., Chu K., Han W., Chen Z., Tang R., Yin W., et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021; 21: 181–192. doi: 10.1016/S1473-3099(20)30843-4. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
57. Jara A., Undurraga E.A., González C., Paredes F., Fontecilla T., Jara G., Pizarro A., Acevedo J., Leo K., Leon F., et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021; 385: 875–884. doi: 10.1056/NEJMoa2107715. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
58. Tanriover M.D., Doğanay H.L., Akova M., Güner H.R., Azap A., Akhan S., Köse Ş., Erdinç F.Ş., Akalın E.H., Tabak Ö.F., et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021; 398: 213–222. doi: 10.1016/S0140-6736(21)01429-X. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
59. Ophinni Y., Hasibuan A.S., Widhani A., Maria S., Koesnoe S., Yunihastuti E., Karjadi T.H., Rengganis I., Djauzi S. COVID-19 Vaccines: Current Status and Implication for Use in Indonesia. Acta Med. Indones. 2020; 52: 388–412. [PubMed] [Google Scholar][Ref list]
60. Xia S., Zhang Y., Wang Y., Wang H., Yang Y., Gao G.F., Tan W., Wu G., Xu M., Lou Z., et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021; 21: 39–51. doi: 10.1016/S1473-3099(20)30831-8. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
61. Wang H., Zhang Y., Huang B., Deng W., Quan Y., Wang W., Xu W., Zhao Y., Li N., Zhang J., et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020; 182: 713–721.e9. doi: 10.1016/j.cell.2020.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
62. Xia S., Duan K., Zhang Y., Zhao D., Zhang H., Xie Z., Li X., Peng C., Zhang Y., Zhang W., et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA. 2020; 324: 951–960. doi: 10.1001/jama.2020.15543. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
63. Saeed B.Q., Al-Shahrabi R., Alhaj S.S., Alkokhardi Z.M., Adrees A.O. Side Effects and Perceptions Following Sinopharm COVID-19 Vaccination. Int. J. Infect. Dis. 2021; 111: 219–226. doi: 10.1016/j.ijid.2021.08.013. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
64. Thiagarajan K. What do we know about India’s Covaxin vaccine? BMJ. 2021; 373: n997. doi: 10.1136/bmj.n997. [DOI] [PubMed] [Google Scholar][Ref list]
65. Kyriakidis N.C., López-Cortés A., González E.V., Grimaldos A.B., Prado E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines. 2021; 6: 28. doi: 10.1038/s41541-021-00292-w. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
66. Ella R., Reddy S., Jogdand H., Sarangi V., Ganneru B., Prasad S., Das D., Raju D., Praturi U., Sapkal G., et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: Interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect. Dis. 2021; 21: 950–961. doi: 10.1016/S1473-3099(21)00070-0. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
67. Dai L., Gao G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021; 21: 73–82. doi: 10.1038/s41577-020-00480-0. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
68. Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020; 5: 18. doi: 10.1038/s41541-020-0170-0. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
69. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586: 516–527. doi: 10.1038/s41586-020-2798-3. [DOI] [PubMed] [Google Scholar][Ref list]
70. Van Doremalen N., Lambe T., Spencer A., Belij-RammerstorferS., Purushotham J.N., Port J.R., Avanzato V.A., Bushmaker T., Flaxman A., Ulaszewska M., et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020; 586: 578–582. doi: 10.1038/s41586-020-2608-y. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
71. Kaur U., Ojha B., Pathak B., Singh A., Giri K., Singh A., Das A., Misra A., Yadav A., Chakrabarti S.S., et al. A prospective observational safety study on ChAdOx1 nCoV-19 corona virus vaccine (recombinant) use in healthcare workers-first results from India. EClinical Medicine. 2021; 38: 101038. doi: 10.1016/j.eclinm.2021.101038. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
72. Folegatti P.M., Ewer K.J., Aley P.K., Angus B., Becker S., Belij-Rammerstorfer S., Bellamy D., Bibi S., Bittaye M., Clutterbuck E.A., et al. Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020; 396: 467–478. doi: 10.1016/S0140-6736(20)31604-4. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
73. Schultz N.H., Sørvoll I.H., Michelsen A.E., Munthe L.A., Lund-Johansen F., Ahlen M.T., Wiedmann M., Aamodt A.H., Skattør T.H., Tjønnfjord G.E., et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021; 384: 2124–2130. doi: 10.1056/NEJMoa2104882. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
74. Rab S., Afjal, Javaid M., Haleem A., Vaishya R. An update on the global vaccine development for coronavirus. Diabetes Metab. Syndr. 2020; 14: 2053–2055. doi: 10.1016/j.dsx.2020.10.023. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
75. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., et al. Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397: 671–681. doi: 10.1016/S0140-6736(21)00234-8. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
76. Kostoff R.N., Brigs M.B., Porter A.L., Spandidos D.A., Tsatsakis A. COVID-19 vaccine safety. Int. J. Mol. Med. 2020; 46: 1599–1602. doi: 10.3892/ijmm.2020.4733. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
77. Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021; 397: 642–643. doi: 10.1016/S0140-6736(21)00191-4. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
78. Nogrady B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature. 2021; 595: 339–340. doi: 10.1038/d41586-021-01813-2. [DOI] [PubMed] [Google Scholar][Ref list]
79. Sadoff J., Le Gars M., Shukarev G., Heerwegh D., Truyers C., de Groot A.M., Stoop J., Tete S., Van Damme W., Leroux-Roels I., et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N. Engl. J. Med. 2021; 384: 1824–1835. doi: 10.1056/NEJMoa2034201. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
80. Stephenson K.E., Le Gars M., Sadoff J., de Groot A.M., Heerwegh D., Truyers C., Atyeo C., Loos C., Chandrashekar A., McMahan K., et al. Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA. 2021; 325: 1535–1544. doi: 10.1001/jama.2021.3645. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
81. Alter G., Yu J., Liu J., Chandrashekar A., Borducchi E.N., Tostanoski L.H., McMahan K., Jacob-Dolan C., Martinez D.R., Chang A., et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021; 596: 268–272. doi: 10.1038/s41586-021-03681-2. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
82. Edwards K., Orenstein W. COVID-19: Vaccines to Prevent SARS-CoV-2 Infection. U: UpToDate [Internet] 2022. [(accessed on 2 February 2022)]. Available online: https://www.uptodate.com/ contents/covid-19-vaccines. [Ref list]
83. Edwards K., Orenstein W. COVID-19: Vaccines to Prevent SARS-CoV-2 Infection. U: UpToDate [Internet] 2022. [(accessed on 2 February 2022)]. Available online: https://www.uptodate.com/ contents/covid-19-vaccines. [Ref list]
84. Zhang N., Tang J., Lu L., Jiang S., Du L. Receptor-binding domain-based subunit vaccines against MERS-CoV. Virus Res. 2015; 202: 151–159. doi: 10.1016/j.virusres.2014.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
85. Malonis R.J., Lai J.R., Vergnolle O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020; 120: 3210–3229. doi: 10.1021/acs.chemrev.9b00472. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
86. Jeyanathan M., Afkhami S., Smaill F., Miller M.S., Lichty B.D., Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020; 20: 615–632. doi: 10.1038/s41577-020-00434-6. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
87. Park K.S., Sun X., Aikins M.E., Moon J.J. Non-viral COVID-19 vaccine delivery systems. Adv. Drug Deliv. Rev. 2021; 169: 137–151. doi: 10.1016/j.addr.2020.12.008. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
88. Ita K. Coronavirus Disease (COVID-19): Current Status and Prospects for Drug and Vaccine Development. Arch. Med. Res. 2021; 52: 15–24. doi: 10.1016/j.arcmed.2020.09.010. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
89. Keech C., Albert G., Cho I., Robertson A., Reed P., Neal S., Plested J.S., Zhu M., Cloney-Clark S., Zhou H., et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020; 383: 2320–2332. doi: 10.1056/NEJMoa2026920. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
90. Heath P.T., Galiza E.P., Baxter D.N., Boffito M., Browne D., Burns F., Chadwick D.R., Clark R., Cosgrove C., Galloway J., et al. Safety and efficacy of NVX-CoV2373 covid-19 vaccine. N. Engl. J. Med. 2021; 385: 1172–1183. doi: 10.1056/NEJMoa2107659. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
91. Ahmed S., Khan S., Imran I., Al Mughairbi F., Sheikh F.S., Hussain J., Khan A., Al-Harrasi A. Vaccine Development against COVID-19: Study from Pre-Clinical Phases to Clinical Trials and Global Use. Vaccines. 2021; 9: 836. doi: 10.3390/vaccines9080836. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
92. Lee L.Y.Y., Izzard L., Hurt A.C. A Review of DNA Vaccines against Influenza. Front. Immunol. 2018; 9: 1568. doi: 10.3389/fimmu.2018.01568. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
93. Lurie N., Saville M., Hatchett R., Halton J. Developing Covid-19 Vaccines at Pandemic Speed. N. Engl. J. Med. 2020; 382: 1969–1973. doi: 10.1056/NEJMp2005630. [DOI] [PubMed] [Google Scholar][Ref list]
94. Prompetchara E., Ketloy C., Tharakhet K., Kaewpang P., Buranapraditkun S., Techawiwattanaboon T., Sathean-Anan-Kun S., Pitakpolrat P., Watcharaplueksadee S., Phumiamorn S., et al. DNA vaccine candidate encoding SARS-CoV-2 spike proteins elicited potent humoral and Th1 cell-mediated immune responses in mice. PLoS ONE. 2021; 16: e0248007. doi: 10.1371/journal.pone.0248007. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
95. Silveira M.M., Moreira G.M.S.G., Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2021; 267: 118919. doi: 10.1016/j.lfs.2020.118919. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
96. Lukacs N.W., Malinczak C.A. Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines. 2020; 8: 783. doi: 10.3390/vaccines8040783. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
97. Debock I., Flamand V. Unbalanced Neonatal CD4(+) T-Cell Immunity. Front. Immunol. 2014; 5: 393. doi: 10.3389/fimmu.2014.00393. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
98. Wang N., Shang J., Jiang S., Du L. Subunit Vaccines against Emerging Pathogenic Human Coronaviruses. Front. Microbiol. 2020; 11: 298. doi: 10.3389/fmicb.2020.00298. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
99. Rauch S., Jasny E., Schmidt K.E., Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018; 9: 1963. doi: 10.3389/fimmu.2018.01963. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list]
100. Dey A., Rajanathan C.T.M., Chandra H., Pericherla H.P.R., Kumar S., Choonia H.S., Bajpai M., Singh A.K., Sinha A., Saini G., et al. Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal