Author(s):
Perla Ganesh, CH. B. V. Narasimha Raju, N. Jagadeesh, Hemant M. Gandhi, BM. Rao, Dharamasoth Rama Devi, K. Basavaiah
Email(s):
pganesh168@gmail.com
DOI:
10.52711/0974-4150.2024.00005
Address:
Perla Ganesh1,3*, CH. B. V. Narasimha Raju1,3, N. Jagadeesh1, Hemant M. Gandhi1, BM. Rao3, Dharamasoth Rama Devi2, K. Basavaiah3
1Dr. Reddy’s Laboratories Limited, API Plant, Bollaram - III, Plot No 116, IDA Bollaram, Medak District, Hyderabad 502325, Telangana, India.
2Dr. Samuel George Institute of Pharmaceutical Sciences, Markapur, India.
3Department of Chemistry, Andhra University, Vishakhapatnam, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 1,
Year - 2024
ABSTRACT:
The study aimed to develop and validate the method for trace level analysis of 2-(3-(trifluoromethyl)phenyl)propanal (2-TFL) impurity in calcium sensing receptor drugs by gas chromatographic method using mass spectrometry (GC-MS). The method utilizes a capillary column with 6% cyanopropyl phenyl and 94% dimethylpolysiloxane stationary phase with EI source in Selective Ion Monitoring (SIM) mode under programming temperature was used. After successful development, the method was validated according to our in-house validation guidelines for trace level analysis. The method proved to be selective for 2-(3-(trifluoromethyl) phenyl)propanal impurity in drug substance. A dissolve and injection approach was adopted for sample introduction in a split mode. Methanol was used as a diluent. The calibration curves showed good linearity over the concentration range from 1.85 (LOQ to 5.56ppm (150%)) of the target concentration of 3 ppm. The correlation coefficient obtained was >0.999. A limit of detection (LOD) of about 0.56ppm was achieved and limit of quantitation (LOQ) of 1.85ppm was achieved for 2-(3-(trifluoromethyl)phenyl)propanal impurity, when the samples were prepared at 20mg/mL. While recovery proved to be 101.0% at Limit of quantification (LOQ) level, 102.1% at Target analytical level (TAL) and 98.1% at 150% of the TAL, demonstrate the absence of matrix effect.
Cite this article:
Perla Ganesh, CH. B. V. Narasimha Raju, N. Jagadeesh, Hemant M. Gandhi, BM. Rao, Dharamasoth Rama Devi, K. Basavaiah. Trace level Determination of 2-(3-(trifluoromethyl)phenyl)propanal in Calcium Sensing Receptor drug by GCMS. Asian Journal of Research in Chemistry. 2024; 17(1):25-0. doi: 10.52711/0974-4150.2024.00005
Cite(Electronic):
Perla Ganesh, CH. B. V. Narasimha Raju, N. Jagadeesh, Hemant M. Gandhi, BM. Rao, Dharamasoth Rama Devi, K. Basavaiah. Trace level Determination of 2-(3-(trifluoromethyl)phenyl)propanal in Calcium Sensing Receptor drug by GCMS. Asian Journal of Research in Chemistry. 2024; 17(1):25-0. doi: 10.52711/0974-4150.2024.00005 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2024-17-1-5
REFERENCES:
1. Block, G. A.; Bushinsky, D. A.; Cheng, S.; Cunningham, J.; Dehmel, B.; Drueke, T. B.; Ketteler, M.; Kewalramani, R.; Martin, K. J.; Moe, S. M.; Patel, U. D.; Silver, J.; Sun, Y.; Wang, H.; Chertow, G. M. Effect of Etelcalcetide vs Cinacalcet on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: A Randomized Clinical Trial. JAMA. 2017; 317 (2): 156. https://doi.org/10.1001/jama.2016.19468.
2. https://en.wikipedia.org/wiki/Calcium-sensing_receptor (accessed on 16/04/2019).
3. Filopanti, M.; Corbetta, S.; Barbieri, A. M.; Spada, A. Pharmacology of the Calcium Sensing Receptor. Clin. Cases Miner. Bone Metab. Off. J. Ital. Soc. Osteoporos. Miner. Metab. Skelet. Dis. 2013; 10 (3): 162–165.
4. https://en.wikipedia.org/wiki/Calcium-sensing_receptor (accessed on 16/04/2019).
5. S.S. Kumar, S. Jaiswal, V. Srinivasarao; Determination of 3-Trifluoromethyl benzaldehyde impurity in Cinnacalcet drug substances. ACAIJ. 2016; 16(3): 128-132.
6. https://en.wikipedia.org/wiki/Etelcalcetide (accessed on 16/04/2019).
7. Farnoudian-Habibi, A.; Jaymand, M. Development and Validation of a Quantitative Assay for the Determination of Cinacalcet and Its Main Metabolites in Human Plasma Using RP-HPLC Method. Microchem. J. 2017; 130: 377–383. https://doi.org/10.1016/j.microc.2016.10.017.
8. Farnoudian-Habibi, A.; Jaymand, M. Separation and Quantitative Determination of Cinacalcet Metabolites in Urine Sample Using RP-HPLC after Derivation with a Fluorescent Labeling Reagent. J. Chromatogr. B 2016; 1027: 214–220. https://doi.org/10.1016/j.jchromb.2016.05.047.
9. Sunil Reddy, P. Development and Validation of a Stability-Indicating RP-UPLC Method for the Estimation of Impurities in Cinacalcet Hydrochloride API and Its Formulation. Sci. Pharm. 2015; 83 (4): 583–598. https://doi.org/10.3797/scipharm.1502-06.
10. Bhushan, R.; Dubey, R. Indirect Reversed‐phase High‐performance Liquid Chromatographic and Direct Thin‐layer Chromatographic Enantioresolution of (R, S)‐Cinacalcet. Biomed. Chromatogr. 2011; 25(6): 674–679. https://doi.org/10.1002/bmc.1502.
11. S. Bandaru, R. Sirisilla, P. R. Arakatla, A. R. Nagula, R. R. Pingili, R. R. Bandi, N. R. Thaduri, T. Singavarapu; Development of Validated Stability-indicating HPLC Method for the determination of Cinacalcet hydrochloride and its impurities, International Journal of Modern Chemistry and Applied Science. 2015; 2(1): 57-64.
12. Chaudhari, Y. J.; Lokhande, R. S.; Yadav, R. R. Development and Validation of Stability Indicative Analysis for Cinacalcet Hydrochloride and Stress Study. J. Sci. Res. 2021; 65(3): 220–228. https://doi.org/10.37398/JSR.2021.650326.
13. A. B. Loni, M. R. Ghante, S. D. Sawant; Spectrophotometric estimation of Cinacalcet Hydrochloride in bulk and tablet dosage form, Int. J Pharm Pharm Sci, 4(3): 513-515.
14. Yang, F.; Wang, H.; Zhao, Q.; Liu, H.; Hu, P.; Jiang, J. Determination of Cinacalcet Hydrochloride in Human Plasma by Liquid Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2012; 61: 237–241. https://doi.org/10.1016/j.jpba.2011.10.022.
15. Nirogi, R.; Kandikere, V.; Komarneni, P.; Aleti, R.; Padala, N.; Kalaikadiban, I. Quantification of Cinacalcet by LC–MS/MS Using Liquid–Liquid Extraction from 50μL of Plasma. J. Pharm. Biomed. Anal. 2011; 56(2): 373–381. https://doi.org/10.1016/j.jpba.2011.05.032.
16. Rao, R. N.; Saida, Shaik.; Naidu, Ch. G.; Sravan, B.; Ramesh, B. Liquid Chromatographic Separation, Determination and ESI-MS/MS, FT-IR and NMR Characterization of the Forced Degradation Products of Cinacalcet. Anal. Methods. 2014; 6(14): 5076. https://doi.org/10.1039/c4ay00077c.
17. S. Sultana, R. Vani, M. Sunitha; Analytical method development and validation for the estimation of etelcalcetide in bulk and its dosage form using RP-HPLC, Indo American Journal of Pharmaceutical Research, 2017; 7(11); 928-934.
18. Adireddy, K.K.; Baratam, S.R.; Pratap S.,N.H. RP-HPLC Method for Quantification of Etelcalcetide in Bulk and Parentral Dosage Form. Res. J. Pharm. Technol. 2021; 5521–5526. https://doi.org/10.52711/0974-360X.2021.00963.
19. Bushinsky, D. A.; Chertow, G. M.; Cheng, S.; Deng, H.; Kopyt, N.; Martin, K. J.; Rastogi, A.; Ureña-Torres, P.; Vervloet, M.; Block, G. A. One-Year Safety and Efficacy of Intravenous Etelcalcetide in Patients on Hemodialysis with Secondary Hyperparathyroidism. Nephrol. Dial. Transplant. 2020; 35(10): 1769–1778. https://doi.org/10.1093/ndt/gfz039.
20. Friedl, C.; Zitt, E. Role of Etelcalcetide in the Management of Secondary Hyperparathyroidism in Hemodialysis Patients: A Review on Current Data and Place in Therapy. Drug Des. Devel. Ther. 2018; 12: 1589–1598. https://doi.org/10.2147/DDDT.S134103.
21. Prabha, N.; Bushra, J. R. Gas Chromatography Mass Spectrometry Analysis of Andrographis Paniculata. Asian J. Res. Chem. 2019; 12(1): 1. https://doi.org/10.5958/0974-4150.2019.00001.4.
22. Pandian, R. S.; Noora, A. T. GC-MS Analysis of Phytochemical Compounds Present in the Leaves of Citrus Medica. L. Res. J. Pharm. Technol. 2019; 12(4): 1823. https://doi.org/10.5958/0974-360X.2019.00304.4.
23. Kavitha, S.; Kannan, M. V. R.; Mani, P. Identification of Bioactive Compounds in the Leaves Extract of Piper Longum Using GCMS. Res. J. Pharm. Technol. 2020; 13(7): 3169. https://doi.org/10.5958/0974-360X.2020.00560.0.
24. Brintha, S.; Sivaraj, C.; Saraswathi, K.; Arumugam, P.; Rebecca, L. J. Antioxidant, Antibacterial Activities and GC-MS Analysis of Methanol Extract of Buds of Hypericum Hookerianum Wight and Arnott. Res. J. Pharm. Technol. 2020; 13(8): 3709. https://doi.org/10.5958/0974-360X.2020.00656.3.
25. Patan, A. Qualitative Phytochemical Analysis in Determination of Antioxidant Activity of Methanolic Extract of Oenothera Biennis by GC MS – A Preliminary Research Study. Res. J. Pharm. Technol. 2021: 3744–3750. https://doi.org/10.52711/0974-360X.2021.00648.
26. R, R.; G.P, J. FTIR and GCMS Analysis of Antidiabetic Compounds in Ethyl Acetate Seed Extracts of Momordica Charantia. Res. J. Pharm. Technol. 2021; 6705–6709. https://doi.org/10.52711/0974-360X.2021.01158.
27. Deliza, H.; Ningombam, D.; Maibam, D. Elemental and Phytochemical Composition of Pratia Begonifolia (Wall.) Lindl. by Using GF-AAS, SEM-EDAX, FTIR, GC-MS and HR-LCMS. Res. J. Pharm. Technol. 2023; 1556–1560. https://doi.org/10.52711/0974-360X.2023.00254.
28. Ananthalakshmi, R.; Rajarathinam, S. R. X.; Sadiq, A. M.; Poongothai, A. Phytochemical Profiling of Luffa Acutangula Peel Extract Using GCMS Study. Res. J. Pharm. Technol. 2019; 12(12): 6071. https://doi.org/10.5958/0974-360X.2019.01054.0.
29. S., J.; N, J.; N, S.; V, A. Bioremediation of Kitchen Wastes through Mushroom Cultivation and Study Their Phytochemical and Antioxidant Potential Using GCMS Chromatogram. Res. J. Pharm. Technol. 2021: 6627–6631. https://doi.org/10.52711/0974-360X.2021.01145.