Author(s):
Ali Adel Dawood, Qasim Al Chalab, Mahmood Abduljabbar Altobje
Email(s):
aad@uomosul.edu.iq
DOI:
10.52711/0974-4150.2025.00062
Address:
Ali Adel Dawood1*, Qasim Al Chalab2, Mahmood Abduljabbar Altobje3
1Department of Anatomy, College of Medicine, University of Mosul, Mosul, Iraq.
2Department of Medicine, College of Medicine, University of Mosul, Mosul, Iraq.
3Department of Biology, College of Science, University of Mosul, Mosul, Iraq.
*Corresponding Author
Published In:
Volume - 18,
Issue - 6,
Year - 2025
ABSTRACT:
This article conducts a comprehensive study about how microbial gold recovery constitutes a sustainable alternative over expensive traditional extraction systems. Bioleaching involves bacteria such as Chromobacterium violaceum, Pseudomonas aeruginosa, Bacillus spp. and fungi such as Aspergillus niger for dissolving gold through mechanisms which include biooxidation using Acidithiobacillus ferrooxidans and biocyanidation through C. violaceum and organic acid production through fungal citric and oxalic acid production. The treatment methods show high performance when working with refractory gold ores and electronic waste by minimizing toxic byproducts and energy usage. The extraction process moves at a slow pace because it requires environmental conditions suitable for microbial activity and it generates harmful byproducts of cyanide among other things. Scientists plan to use genetics to boost microbial performance while nanotechnology will help extract gold nanoparticles better and they aim to create comprehensive biorefineries for extracting several metals from waste. Bioleaching stands as an environmentally friendly process which meets circular economy standards and should function as a primary sustainable mining method for upcoming years.
Cite this article:
Ali Adel Dawood, Qasim Al Chalab, Mahmood Abduljabbar Altobje. Optimizing Gold Bioleaching: Microbial Strategies, Challenges, and Industrial Applications. Asian Journal of Research in Chemistry. 2025; 18(6):409-9. doi: 10.52711/0974-4150.2025.00062
Cite(Electronic):
Ali Adel Dawood, Qasim Al Chalab, Mahmood Abduljabbar Altobje. Optimizing Gold Bioleaching: Microbial Strategies, Challenges, and Industrial Applications. Asian Journal of Research in Chemistry. 2025; 18(6):409-9. doi: 10.52711/0974-4150.2025.00062 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2025-18-6-7
12. REFERENCES:
1. He J, Kappler A. Recovery of precious metals from waste streams. Wiley. 2017. https://doi.org/10.1111/1751-7915.12759.
2. Rendn-Castrilln L, Ramrez-Carmona M, Ocampo-Lpez C, Gmez-Arroyave L. Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices. Multidisciplinary Digital Publishing Institute. 2023. https://doi.org/10.3390/su151310222.
3. Bosecker K. Bioleaching: metal solubilization by microorganisms. Oxford University Press. 1997. https://doi.org/10.1016/s0168-6445(97)00036-3.
4. Jorjani E, Sabzkoohi HA. Gold leaching from ores using biogenic lixiviants A review. Elsevier BV. 2021. https://doi.org/10.1016/j.crbiot.2021.12.003.
5. Siezen RJ, Wilson G. Bioleaching genomics. Wiley. 2009. https://doi.org/10.1111/j.1751-7915.2009.00108.x.
6. Liu R, Li J, Ge Z. Review on Chromobacterium Violaceum for Gold Bioleaching from E-waste. Elsevier BV. 2016. https://doi.org/10.1016/j.proenv.2016.02.119.
7. Girma G. Microbial bioremediation of some heavy metals in soils: An updated review. None. 2015. https://doi.org/10.21608/EAJBSG.2015.16483.
8. Wrbel M, liwakowski W, Kowalczyk P, Kramkowski K, Dobrzyski J. Bioremediation of Heavy Metals by the Genus Bacillus. Multidisciplinary Digital Publishing Institute. 2023. https://doi.org/10.3390/ijerph20064964.
9. Chingwaru W, Vidmar J, Chingwaru C. Potential of biotechnology for metals extraction in Zimbabwe: a review. None. 2017. https://doi.org/10.17159/2411-9717/2017/V117N4A10.
10. Navarro CA, Bernath DV, Jerez CA. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation. BioMed Central. 2013. https://doi.org/10.4067/s0716-97602013000400008.
11. Rawlings DE. Microbially-assisted dissolution of minerals and its use in the mining industry. None. 2004. https://doi.org/10.1351/PAC200476040847.
12. Iglesias N, Carranza F, Palencia I. La biolixiviacin como pretratamiento de menas aurferas refractarias en matriz de sulfuros. None. 1998. https://doi.org/10.3989/REVMETALM.1998.V34.I1.656.
13. Madrigal-Arias JE, Argumedo-Delira R, Alarcn A, Mendoza-Lpez MR, Garca-Barradas S, Cruz-Snchez JS, et al. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two <italic>Aspergillus niger</italic>strains. Springer Nature. 2015. https://doi.org/10.1590/s1517-838246320140256.
14. Brisson V, Zhuang W, AlvarezCohen L. Bioleaching of rare earth elements from monazite sand. Wiley. 2015. https://doi.org/10.1002/bit.25823.
15. Das S, Natarajan G, Ting Y. Bio-extraction of precious metals from urban solid waste. American Institute of Physics. 2017. https://doi.org/10.1063/1.4974410.
16. Ojo GJ, Onile O, Momoh A, Oyeyemi BF, Omoboyede V, Fadahunsi AI, et al. Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Journal of Genetic Engineering and Biotechnology. 2023. https://doi.org/10.1186/s43141-023-00607-5.
17. Abhijit Gaikwad, Dattatray Ghotekar, Archana Pangavhane, Vishnu Adole, Akash Gaikwad. Chromenes As Antimicrobial Agents: Mechanisms, Efficacy, And Future Perspectives. Asian Journal of Research in Chemistry.2025; 18(3):185-3. doi: 10.52711/0974-4150.2025.00030.
18. Vidya Sagar, Ashish Sarkar. Biological Activity of Substituted Benzothiazoles. Asian Journal of Research in Chemistry.2024; 17(5):289-5. doi: 10.52711/0974-4150.2024.00050.
19. Rakesh Kumar. The Environmental and Biological Risks of Micro and Nano Plastics: A Review. Asian Journal of Research in Chemistry.2024; 17(6):387-1. doi: 10.52711/0974-4150.2024.00064
20. Dawood A. Using Remdesivir and Dexamethasone for Treatment of SARS-CoV-2 Shortens the patient's stay in the Hospital. Asi J Pharm Res. 2021; 11(2):138-0. doi: 10.52711/2231-5691.2021.00026.
21. Anima Biswas, Divya Pujari, Manisha Masih, Arin Bhattacharya. Anti-Microbial Evaluation of Newly Synthesized Hetero-Aryl Thiazole Derivatives. Asian Journal of Research in Chemistry.2025; 18(4):246-0. doi: 10.52711/0974-4150.2025.00038.
22. Dawood A, and Jasim B. The CRISPR Genome Editing Process is an Effective Advancement of Short-Term Cancer Treatment. Res J Pha Dos Fo Tech. 2021; 13(1): 54-56. doi: 10.5958/0975-4377.2021.00009.4.
23. Keke M, Nnanwube I, Onukwuli O. Overvew of Boleachng. Journal of Engineering Research and Reports. 2023. https://doi.org/10.9734/jerr/2023/v25i2884.
24. Sayqal A, Ahmed OB. Advances in Heavy Metal Bioremediation: An Overview. Hindawi Publishing Corporation. 2021. https://doi.org/10.1155/2021/1609149.
25. Dawood A. Reasons for discontinuing the use of Hydroxychloroquine in the treatment of the Novel Coronavirus. Asi J Pharm Ana. 2021; 11(2):179-0. doi: 10.52711/2231-5675.2021.00030.
26. Alhiti LS, Hamid E, Abdullah FH. Green Methods for Gold Nanoparticle Synthesis: Properties, Characterization, and Diverse Applications Review Article. Humanitarian and Natural Sciences Journal. 2025. https://doi.org/10.53796/hnsj63/12.