Author(s):
Lazhar Benmebrouk, Abdelmadjid Kaddour, Lazhar Mohammedi, Abderrahim Achouri
Email(s):
lazhar.benmebrouk@gmail.com
DOI:
10.52711/0974-4150.2021.00050
Address:
Lazhar Benmebrouk1*, Abdelmadjid Kaddour2, Lazhar Mohammedi3, Abderrahim Achouri3
1Univ. Ouargla, Fac. des Mathématiques et des Sciences de la Matière, Lab. Rayonnement et Plasmas et Physique de Surface, Ouargla 30000, Algeria.
2Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, 47133, Ghardaïa, Algeria.
3Univ. Ouargla, Fac. des Mathématiques et des Sciences de la Matière, Lab. Développement des énergies nouvelles et renouvelables dans les zones arides et sahariennes, Ouargla 30000, Algeria.
*Corresponding Author
Published In:
Volume - 14,
Issue - 4,
Year - 2021
ABSTRACT:
The aim of this study is to detect the chemical elements of the greenhouse effect from the LIDAR signal. Using a digital program developed by Fortran language, and based on spectral data. In the present work, The LIDAR sample is clearly contains water vapor and carbon dioxide. According to our results, the content of the sample with methane and the non-detection of nitrogen oxide, due to the absence of its absorption signal in the spectral range of the experimental signal. Carbon dioxide is one of the most dangerous greenhouse gases, our results show that 1 mole of this gas requires 1.45 moles of water vapor.
Cite this article:
Lazhar Benmebrouk, Abdelmadjid Kaddour, Lazhar Mohammedi, Abderrahim Achouri. Chemical detection of certain greenhouse gases by the LIDAR Technique. Asian Journal of Research in Chemistry. 2021; 14(4):292-6. doi: 10.52711/0974-4150.2021.00050
Cite(Electronic):
Lazhar Benmebrouk, Abdelmadjid Kaddour, Lazhar Mohammedi, Abderrahim Achouri. Chemical detection of certain greenhouse gases by the LIDAR Technique. Asian Journal of Research in Chemistry. 2021; 14(4):292-6. doi: 10.52711/0974-4150.2021.00050 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2021-14-4-11
REFERENCES:
1. Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., and Houweling, S. (2008). Space-borne remote sensing of CO 2, CH 4, and N 2 O by integrated path differential absorption lidar: a sensitivity analysis. Applied Physics B, 90(3-4), 593-608.
2. Houweling, S., Breon, F. M., Aben, I., Rödenbeck, C., Gloor, M., Heimann, M., and Ciais, P. (2004). Inverse modeling of CO 2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmospheric Chemistry and Physics, 4(2), 523-538
3. Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., ... and Fung, I. Y. (2002). Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models. Nature, 415(6872), 626-630
4. Chédin, A., Saunders, R., Hollingsworth, A., Scott, N., Matricardi, M., Etcheto, J., ... and Crevoisier, C. (2003). The feasibility of monitoring CO2 from high‐resolution infrared sounders. Journal of Geophysical Research: Atmospheres, 108(D2).
5. Engelen, R. J., and Stephens, G. L. (2004). Information content of infrared satellite sounding measurements with respect to CO2. Journal of Applied Meteorology, 43(2), 373-378.
6. Fox, T. A., Barchyn, T. E., Risk, D., Ravikumar, A. P., and Hugenholtz, C. H. (2019). A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas. Environmental Research Letters, 14(5), 053002
7. Kiemle, C., Kawa, S. R., Quatrevalet, M., and Browell, E. V. (2014). Performance simulations for a spaceborne methane lidar mission. Journal of Geophysical Research: Atmospheres, 119(7), 4365-4379.
8. Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., ... and Frankenberg, C. (2016). Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics.
9. Riris, H., Numata, K., Wu, S., Gonzalez, B., Rodriguez, M., Kawa, S., and Mao, J. (2017, May). Methane measurements from space: technical challenges and solutions. In Laser Radar Technology and Applications XXII (Vol. 10191, p. 1019104). International Society for Optics and Photonics.
10. Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., and Houweling, S. (2008). Space-borne remote sensing of CO 2, CH 4, and N 2 O by integrated path differential absorption lidar: a sensitivity analysis. Applied Physics B, 90(3-4), 593-608.
11. Stephan, C., Alpers, M., Millet, B., Ehret, G., Flamant, P., and Deniel, C. (2011, September). MERLIN: a space-based methane monitor. In Lidar Remote Sensing for Environmental Monitoring XII (Vol. 8159, p. 815908). International Society for Optics and Photonics.
12. Fiorani, L., Santoro, S., Parracino, S., Nuvoli, M., Minopoli, C., and Aiuppa, A. (2015). Volcanic CO 2 detection with a DFM/OPA-based lidar. Optics letters, 40(6), 1034-1036.
13. Galtier, S., Anselmo, C., Welschinger, J. Y., Cariou, J. P., Sivignon, J. F., Miffre, A., and Rairoux, P. (2018). Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar. In EPJ Web of Conferences (Vol. 176, p. 01010). EDP Sciences.
14. Ismail, S., Ferrare, R. A., Browell, E. V., Chen, G., Anderson, B., Kooi, S. A., ... and Dunion, J. P. (2010). LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances. Journal of the atmospheric sciences, 67(4), 1026-1047.
15. Anselmo, C., Welschinger, J. Y., Cariou, J. P., Miffre, A., and Rairoux, P. (2016). Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration. Optics express, 24(12), 12588-12599.
16. Hill, C., Gordon, I. E., Kochanov, R. V., Barrett, L., Wilzewski, J. S., and Rothman, L. S. (2016). HITRANonline: An online interface and the flexible representation of spectroscopic data in the HITRAN database. Journal of quantitative spectroscopy and radiative transfer, 177, 4-14.
17. Anselmo, C. (2016). Détection de gaz à effet de serre dans l'atmosphère par spectroscopie optique de similitude (Doctoral dissertation).
18. Kasparian, J., Rodríguez, M., Méjean, G., Yu, J., Salmon, E., Wille, H., ... and Sauerbrey, R. (2003). White-light filaments for atmospheric analysis. Science, 301(5629), 61-64.