ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Aman Tiwari, Kanishk Rai, Himanshu Kahar, Arsalan Khan, Rashidul Quadiri, Nupoor Lokhande, Swati Pandey

Email(s): amantiwari897@gmail.com , kanishkrai009@gmail.com , himanshu777989@gmail.com , nupoor080501@gmail.com , dubeyswati326@gmail.com

DOI: 10.52711/0974-4150.2026.00006   

Address: Aman Tiwari, Kanishk Rai, Himanshu Kahar, Arsalan Khan, Rashidul Quadiri, Nupoor Lokhande, Swati Pandey
Sagar Institute of Research and Technology – Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal.
Department of Pharmaceutical Chemistry, SIRT-Pharmacy, SAGE University, Bhopal, M.P.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Artificial intelligence (AI) and machine learning (ML) are emerging as transformative tools in the pharmaceutical industry, particularly in drug discovery and development. By enabling rapid analysis of vast datasets, AI can accelerate virtual screening, molecular design, target identification, and prediction of drug efficacy and toxicity, ultimately reducing the cost and time associated with traditional research and development. Despite these advances, the successful application of AI depends on access to high-quality, unbiased datasets, robust model validation, and the resolution of ethical challenges such as data privacy, regulatory acceptance, and algorithmic transparency. The current limitations of AI-based approaches, including data scarcity, endpoint heterogeneity, and the “black box” nature of many deep learning models, restrict their full integration into clinical and regulatory workflows. This review explores the benefits, challenges, and drawbacks of AI in the pharmaceutical sector, emphasizing both its potential and its constraints. Strategies to overcome existing barriers are discussed, including data augmentation to address limited training datasets, the adoption of explainable AI frameworks to improve interpretability, and the integration of computational models with traditional experimental methods for enhanced reliability. The convergence of AI with precision medicine and real-world data also holds promise for improving personalized therapeutic strategies. Overall, AI has the potential to revolutionize drug discovery, provided that its limitations are recognized and addressed. Interdisciplinary collaboration between AI researchers, pharmaceutical scientists, and regulatory bodies will be essential to ensure its responsible, ethical, and effective implementation in future therapeutics.


Cite this article:
Aman Tiwari, Kanishk Rai, Himanshu Kahar, Arsalan Khan, Rashidul Quadiri, Nupoor Lokhande, Swati Pandey. Advances in Pharmaceutical Research and Development through Artificial Intelligence and Machine Learning: A Review. Asian Journal of Research in Chemistry. 2026; 19(1):25-0. doi: 10.52711/0974-4150.2026.00006

Cite(Electronic):
Aman Tiwari, Kanishk Rai, Himanshu Kahar, Arsalan Khan, Rashidul Quadiri, Nupoor Lokhande, Swati Pandey. Advances in Pharmaceutical Research and Development through Artificial Intelligence and Machine Learning: A Review. Asian Journal of Research in Chemistry. 2026; 19(1):25-0. doi: 10.52711/0974-4150.2026.00006   Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2026-19-1-6


REFERENCES:
1.    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016 May 1; 47:20-33.
2.    Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020 Mar 3;323(9):844-53.
3.    Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: a review. AAPS J. 2022 Jan 4;24(1):19.
4.    Patel SS, Shah SA. Comprehensive Overview and its Pharma Application. Asian Journal of Pharmacy and Technology. 2022 Dec 1;12(4).
5.    Fatima MJ, Parthiban C. Artificial intelligence [AI]-The game changer in pharmaceutical industry. Asian Journal of Pharmacy and Technology. 2024;14(4):386-94.
6.    Bairagi A, Singhai AK, Jain A. Artificial intelligence: Future aspects in the pharmaceutical industry an overview. Asian Journal of Pharmacy and Technology. 2024;14(3):237-46.
7.    Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018 Jun 1;23(6):1241-50.
8.    Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019 Mar 1;24(3):773-80.
9.    Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med. 2016 Jul 7;375(1):65-74.
10.    Makady A, de Boer A, Hillege H, Klungel O, Goettsch W. What is real-world data? A review of definitions based on literature and stakeholder interviews. Value Health. 2017 Jul 1;20(7):858-65.
11.    Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018 Oct;2(10):719-31.
12.    Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019 Jan;25(1):44-56.
13.    Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol. 2018 Dec;36(12):1136-45.
14.    Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. In: MAbs. 2015 Jan 2 (Vol. 7, No. 1, pp. 9-14). Taylor & Francis.
15.    Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021 Dec;6(12):1078-94.
16.    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44.
17.    Patel AI, Khunti PK, Vyas AJ, Patel AB. Explicating artificial intelligence: Applications in medicine and pharmacy. Asian Journal of Pharmacy and Technology. 2022;12(4):401-6.
18.    Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019 Jun;18(6):463-77.
19.    Walters WP, Barzilay R. Applications of deep learning in molecule generation and molecular property prediction. Acc Chem Res. 2020 Dec 28;54(2):263-70.
20.    Patil P, Nrip NK, Hajare A, Hajare D, Patil MK, Kanthe R, Gaikwad AT. Artificial intelligence and tools in pharmaceuticals: An overview. Research Journal of Pharmacy and Technology. 2023;16(4):2075-82.
21.    Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018 Jul 25;4(7): eaap7885.
22.    Shukla SL, Behere SE. Artificial Intelligence in Pharmacology Research. Research journal of Pharmacology and Pharmacodynamics. 2025;17(1):59-68.
23.    Tran TT, Surya Wibowo A, Tayara H, Chong KT. Artificial intelligence in drug toxicity prediction: recent advances, challenges, and future perspectives. J Chem Inf Model. 2023 Apr 26;63(9):2628-43.
24.    Tsou LK, Yeh SH, Ueng SH, Chang CP, Song JS, Wu MH, Chang HF, Chen SR, Shih C, Chen CT, Ke YY. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci Rep. 2020 Oct 8;10(1):16771.
25.    Badwan BA, Liaropoulos G, Kyrodimos E, Skaltsas D, Tsirigos A, Gorgoulis VG. Machine learning approaches to predict drug efficacy and toxicity in oncology. Cell Reports Methods. 2023 Feb 27;3(2).
26.    Habeeba, S. Use of artificial intelligence in drug discovery and its application in drug development.2023.
27.    Kakade PA, Sontakke SM, Hosmani AH, Gonjari ID. The Impact of Artificial Intelligence on Pharmacy Education, Research and Practice. Asian Journal of Pharmaceutical Research. 2025 Jul 17;15(3):327-32.
28.    Blanco-Gonzalez A, Cabezon A, Seco-Gonzalez A, Conde-Torres D, Antelo-Riveiro P, Pineiro A, Garcia-Fandino R. The role of AI in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals. 2023 Jun 18;16(6):891.
29.    Ingale S, Shrisunder N, Gophane G, Birajdar A. Ascent of artificial intelligence (ai) in pharmacy. International Journal of Technology. 2024;14(1):54-8.
30.    Hasan HE, Jaber D, Khabour OF, Alzoubi KH. Ethical considerations and concerns in the implementation of AI in pharmacy practice: a cross-sectional study. BMC Med Ethics. 2024 May 16;25(1):55.
31.    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug 26;596(7873):583-9.
32.    Zaeri N. Drug discovery for COVID-19 and related mutations using artificial intelligence. Research Journal of Pharmacy and Technology. 2023;16(11):5384-91.
33.    Liu Z, Chen X, Carter W, Moruf A, Komatsu TE, Pahwa S, Chan-Tack K, Snyder K, Petrick N, Cha K, Lal-Nag M. AI-powered drug repurposing for developing COVID-19 treatments. Reference Module in Biomedical Sciences. 2022 Feb 23: B978-0.
34.    Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019 Jan;18(1):41-58.
35.    Ogunjobi TT, Gbayisomore TJ, Nneji PO, Olofin OO, Olowe EN, Gigam-Ozuzu CD, Afolabi JI, Okwuokei NB, Boluwaji VA, Ojeniran TP, Ogini IO. Environmental epigenetics and its impacts on disease susceptibility: a comprehensive review. Medinformatics. 2024 Aug 8.
36.    Liu GF, Han B, Zhao X, Lin Q. A comparison of frequentist and Bayesian model-based approaches for missing data analysis: case study with a schizophrenia clinical trial. Stat Biopharm Res. 2016 Jan 2;8(1):116-27.
37.    MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome. 2021;64(4):416-25.

Recomonded Articles:

Author(s): Prathima Patil, S.P. Sethy, T. Sameena, K. Shailaja

DOI:         Access: Open Access Read More

Author(s): Nikita N. Patel, Charmy S. Kothari

DOI:         Access: Open Access Read More

Author(s): Chavan Pooja Ajit, Avinash Mahadeo Bhagwat, Atul Prabhakar Chaudhari

DOI: 10.52711/0974-4150.2021.00061         Access: Open Access Read More

Author(s): Banerjee S, Bonde CG, Merukar SS, Patil YR

DOI:         Access: Open Access Read More

Author(s): Ravi N. Patel, Urviben Y. Patel, Kiran M. Patel, Jimit S. Patel, Ankit D. Patel, Dhrubo Jyoti Sen

DOI:         Access: Open Access Read More

Author(s): V. Prema, Meera Sivaramakrishnan, M. Rabiya

DOI: 10.52711/0974-4150.2023.00076         Access: Open Access Read More

Author(s): Y. Padmavathi, Akari Anjali, Nayaka Raghavendra Babu, P Ravi Kumar

DOI: 10.5958/0974-4150.2017.00064.5         Access: Open Access Read More

Author(s): Shravani S. Pawar, Sachin H. Rohane

DOI: 10.5958/0974-4150.2021.00014.6         Access: Open Access Read More

Author(s): Rutuja P. Pawar, Sachin H. Rohane

DOI: 10.5958/0974-4150.2021.00024.9         Access: Open Access Read More

Author(s): Nachiket S. Dighe, Priyanka R. Varade, Ganesh S. Shinde, Priya S. Rao

DOI: 10.5958/0974-4150.2019.00028.2         Access: Open Access Read More

Author(s): Prafulla M Sabale, Pratik Patel, Prabhjot Kaur

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 


Recent Articles




Tags