ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): R. Parkavi, G. Madhan, K. Srinivasan, K. Sathishkumar, A. Chandramohan, K. Dinakaran

Email(s): kavichemistry89@gmail.com

DOI: 10.52711/0974-4150.2022.00003   

Address: R. Parkavi1*, G. Madhan1, K. Srinivasan1, K. Sathishkumar2, A. Chandramohan2, K. Dinakaran1
1Department of Chemistry, Thiruvalluvar University, Vellore - 632115, India.
2Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai - 603110, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 1,     Year - 2022


ABSTRACT:
We have synthesized new fluorescent organic molecules namely arylidene malanonitriles, through Knovenegal condensation reaction of aryl aldehydes and malanonitrile, which are capable of detectingCd2+and Cu2+ ions in water with sensitivity. The synthesized molecules are characterized through infrared spectrometry, high resolution Mass spectrometry and Nuclear Magnetic Resonance spectroscopy. The fluorescent organic molecules exhibited a fluorescent emission and significant UV-Vis absorption, the intensity of which is increased proportional to the addition of Cd2+ and Cu2+ ions. The lowest detection limit for the Cd2+and Cu2+ were found to be 2.0×10-10 M and 4×10-12 M, respectively.


Cite this article:
R. Parkavi, G. Madhan, K. Srinivasan, K. Sathishkumar, A. Chandramohan, K. Dinakaran. Optical detection of Copper and Cadmium from Aqueous solution using Arylidenemalanonitriles. Asian Journal of Research in Chemistry. 2022; 15(1):19-6. doi: 10.52711/0974-4150.2022.00003

Cite(Electronic):
R. Parkavi, G. Madhan, K. Srinivasan, K. Sathishkumar, A. Chandramohan, K. Dinakaran. Optical detection of Copper and Cadmium from Aqueous solution using Arylidenemalanonitriles. Asian Journal of Research in Chemistry. 2022; 15(1):19-6. doi: 10.52711/0974-4150.2022.00003   Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2022-15-1-3


REFERENCES:
1.    Aragay G. Pons J. Merkoci A. Recent trends in macro- micro- and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews.  2011; 111(5): 3433-3458. doi.org/10.1021/cr100383r
2.    Kar D.  Sur P. Mandai S. K. Saha T. Kole R. K. Assessment of heavy metal pollution in surface water. International Journal of Environmental Science and Technology 2008; 5(1):119–124. doi.org/10.1007/BF03326004
3.    Lee A. Chin J. Park O. K. Chung H. Kim J. W. Yoon S. Y. Park K. A. novel nearinfrared fluorescence chemosensor for copper ion detection using click ligation and energy transfer. Chem. Commun. 2013; 49-5969. https://doi.org/10.1039/C3CC42059K
4.    Zhou R. Li B. Wu N. Gao G. You J. Lan J. Cyclen-functionalized perylenebisimides as sensitive and selective fluorescent sensors for Pb2+ in aqueous solution. Chem. Commun. 2011; 47(23): 6668-70. https://doi.org/10.1039/C1CC11200G
5.    Wang Z. Lee J. H. Lu Y. Highly sensitive ‘‘turn-on’’ fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem. Commun. 2008; 45. 6005–6007. doi.org/10.1039/B812755G
6.    Barba-Bon A. Costero A. M. Gil S. Parra M. Soto J. Martınez-Manez R. Sancenon F. A new selective fluorogenic probe for trivalent cations. Chem. Commun. 2012; 48. 3000–3002.  doi.org/10.1039/C2CC17184H
7.    Liang J. Qin, M. Xu R. Gao X. Shen Y. Xu Q. Cao W. Wang W. A genetically encoded copper(I) sensor based on engineered structural distortion of EGFP. Chem. Commun. 2012; 48. 3890–3892. doi.org/10.1039/C2CC30531C
8.    Bhatt R. Bhatt R. Padmaja P. DTPA capped gold and silver nanofluids-facile synthesis and their application as chromium sensors. Sensors and Actuators B: Chemical. 2018; 258. 602-611. https://doi.org/10.1016/j.snb.2017.11.154
9.    Ghaedi M. Jaberi S. Y. S. Hajati S. Montazerozohori M. Zarr M. Asfaram A.Kumawat L. K. Gupta V. K. Preparation of iodide selective carbon paste electrode with modified carbon nanotubes by potentiometric method and effect of CuS-NPs on its response. Electro analysis. 2015; 27(8): 1516–22. doi.org/10.1002/elan.201400686
10.    Kim H. N. Guo Z. Zhu W. Yoon J. Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev. 2011; 40. 79-93. doi: 10.1039/C0CS00058B
11.    Li H. Zhang S. J. Gong C. L. Li Y. F. Liang Y. Qi Z. G. Chen S. Highly sensitive and selective fluorescent chemosensor for Ni2+ based on a new poly (arylene ether) with terpyridine substituent groups. Analyst, 2013; 138. 7090-7093. doi.org/10.1039/C3AN01162C
12.    Singh G. Singh J. Mangat S. S. Singh J. Rani S. (2015) Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv. 2015; 5. 12644-12654.  doi.org/10.1039/C4RA14329A
13.    Kumar M. Bhalla V. Dhir A. Babu J. N. A Ni2+ selective chemosensor based on partial cone conformation of calix[4]arene. Dalton Trans. 2010; 39. 10116-10121. doi.org/10.1039/C0DT00804D
14.    Kang D. E. Lim C. S. Kim J. Y. Kim E. S. Chun H. J. Cho B. R. Two-Photon probe for Cu2+ with an internal reference: quantitative estimation of Cu2+ in human tissues by two-photon microscopy. Anal. Chem. 2014; 86. 5353-5359. doi.org/10.1021/ac500329k
15.    Han Z. Yan J. Tang H. Q. He, Y. Zhu Y. Ge Y. Q. Novel simple fluorescent sensor for nickel ions. Tetrahedron Lett, 2017; 58. 1254-7. doi.org/10.1016/j.ica.2020.120099
16.    Huang Z. Yang L. Kong L. Yang J. X. Two-photon fluorescent detection of Cu2+ in live cells through ZnS microhybrid constructed from interfacial coordination bridge of thiocyanate. Dyes Pigments. 2020; 172. 107831.
17.    DOI: 10.1016/j.dyepig.2019.107831
18.    Yua T. Wang Y. Zhu Z. Lia Y. Zhang H. Two new phosphorescent Ir(III) complexes as efficient selective sensors for the Cu2+ ion. Dyes Pigments. 2019; 161. 252–60. DOI: 10.1016/j.dyepig.2018.09.075
19.    Rani R. Paul K. Luxami V. An NBD-based two-in-one Cu2+/Ni2+chemosensor with differential charge transfer processes. New J. Chem. 2016; 40. 2418-2422. https://doi.org/10.1039/C5NJ02648B
20.    Samanta S. Das S. Biswas P. Synthesis of 3,6-di(pyridin-2- yl)-1,2,4,5-tetrazine (pytz) capped silver nanoparticles using 3,6-di(pyridin-2-yl)- 1,4-dihydro-1,2,4,5-tetrazineas reducing agent: application in naked eye sensing of Cu2+, Ni2+ and Ag+ ions in aqueous solution and paper platform. Sensor & Actuators B. Chem. 2014; 202. 23–30. doi.org/10.1016/j.snb.2014.05.036
21.    Manna A. K. Mondal J. Rout K. Patra G. K. A benzohydrazide based two-in-one Ni2+/Cu2+ fluorescent colorimetric chemosensor and its applications in real sample analysis and molecular logic gate. Sensor Actuators B. Chem. 2018; 275. 350–8. https://doi.org/10.1016/j.snb.2018.08.060
22.    Dhanushkodi M. Gangatharan G. Kumar V. Balachandar B. K. Sarveswarid S. Gandhie S. Rajesha J. A simple pyrazine based ratiometric fluorescent sensor for Ni2+ ion detection. Dyes Pigments. 2020; 173. 107897.  doi.org/10.1016/j.dyepig.2019.107897
23.    Upadhyay A. Karpagam S. Synthesis and photo physical properties of carbazole based quinoxaline conjugated polymer for fluorescent detection of Ni2+. Dyes Pigments.  2017; 139. 50-64. doi.org/10.1016/j.dyepig.2016.12.019
24.    Srinivasan K. Subramanian K. Murugan K. Benelli G. Dinakaran K. Fluorescence quenching of MoS2 nanosheets/DNA/silicon dot nanoassembly: effective and rapid detection of Hg2+ ions in aqueous solution. Environmental Science and Pollution Research. 2018; 5 (11): 10567-10576. doi.org/10.1007/s11356-018-1472-x
25.    Srinivasan K. Subramanian K. Rajasekar A. Murugan K. Benelli G. Dinakaran K. A sensitive optical sensor based on DNA-labelled Si@ SiO2 core-shell nanoparticle for the detection of Hg2+ ions in environmental water samples, Bulletin of Materials Science. 2017; 40 (7): 1455-1462. doi.org/10.1007/s12034-017-1486-x
26.    Kumar A. Kumar S. Anthroneamine based chromofluorogenic probes for Hg2+ detection in aqueous solution. Tetrahedron Lett. 2012; 53(16): 2030-4. doi.org/10.1016/j.tetlet.2012.01.134
27.    Kumar A. Vanita V. Walia A. Kumar S. N. N-dimethylaminoethylaminoanthrone -A chromofluorogenic chemosensor for estimation of Cu2+ in aqueous medium and HeLa cells imaging. Sens Actuators B Chem. 2013; 177. 904-12. doi.org/10.1016/j.snb.2012.11.093
28.    Bertini I. Cavallaro G. McGreevy K. S. Coord. Chem. Rev. 2010; 254. 506-524. https://doi.org/10.1016/j.ccr.2009.07.024
29.    Wegner S. V. Sun F. Hernandez N. He C. Chem. Commun. Chem.  2011; 47. 2571-2573.  https://doi.org/10.1039/C0CC04292G
30.    Zhao L. Li M. Liu M. Zhang, Y. Wu C. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II). Journal of Hazardous Materials. 2016; 301(15): 233-241. doi.org/10.1016/j.jhazmat.2015.08.044
31.    Shahat A. TulKubra K. Salman Md. S. Hasan Md. N. Hasan Md. M. Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem J. 2021; 164. 105967. doi.org/10.1016/j.microc.2021.105967
32.    Jeong J. Walker J. M. Wang F. Park J. G. Palmer A. E. Giunta C. Rohrbach M. Steinmann B. Eide D. J. Proc. Natl. Acad. Sci. U.S.A. 2012; 109. E3530. doi.org/10.1073/pnas.1211775110
33.    Chen W. Gong W. Ye Z. Lin Y. Ning G. Dalton Trans. 2013; 42. 10093. https://doi.org/10.1039/C3DT50832C
34.    Wang H. Li Y. Xu S. Li Y. Zhou C. Fei X. Sun L. Zhang C. Li Y. Yang Q. Xu X. Org. Biomol. Chem. 2011; 9. 2850. https://doi.org/10.1039/C0OB01032D
35.    Helal A. Kim H. S. Yamani Z. H. Nasiruzzaman Shaikh M. “Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer.” J. Fluorescence. 2016; 26 (1): 1–9. https://doi.org/10.1007/s10895-015-1713-z
36.    Chandra R. Ghorai A. Patra G. K. “A simple benzildihy- drazone derived colorimetric and fluorescent ‘on–off-on’ sensor for sequential detection of copper (II) and cyanide ions in aqueous solution.” Sensors and Actuators B: Chemical. 2018; 255. 701–711. https://doi.org/10.1016/j.snb.2017.08.067
37.    Huang Y. Li C. F. Shi W. J. Tan H. Y. He Z. Z. Zheng L. Liu F. Yan J. W. A near-infrared BODIPY-based fluorescent probe for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in living cells. Talanta. 2019; 198. 390–397. https://doi.org/10.1016/j.talanta.2019.02.012
38.    Tan Q. Zhang R. Zhang G. Liu X. Qu F. Lu L. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+. Analytical and Bioanalytical Chemistry. 2020; 412. 1317–1324.  https://doi.org/10.1007/s00216-019-02353-5
39.    Bekhradnia A. Domehri E.  Khosravi M. “Novel coumarin-based fluorescent probe for selective detection of Cu(II).” SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 2016; 152. 18–22. https://doi.org/10.1016/j.saa.2015.07.029
40.    Zheng X. Wang S. Wang H. Zhang R. Liu, J. Zhao, B. Novel pyrazoline-based selective fluorescent probe for the detection of hydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 138(5): 247-251. https://doi.org/10.1016/j.saa.2014.11.045
41.    Sun M. Guo J. Yang Q. Xiao N. Li Y. A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems. Anal. Methods. 2018; 10. 3475-3480. https://doi.org/10.1039/C8AY00965A
42.    Lin Y. Peng Y. S. Su W. Tu C. H. Sun C. H. Chow T. J. A highly selective colorimetric and turn-on fluorescent probe for cyanide anion. J.Chowac. Tetrahedron.  2012; 68(11): 2523-2526. https://doi.org/10.1016/j.tet.2012.01.026
43.    Adriana D.S. Menger S. R. Vanderlei G.Machado. Malononitrile–derivative chromogenic devices for the detection of cyanide in water. Journal of Molecular Liquids. 2016; 223. 811-818. https://doi.org/10.1016/j.molliq.2016.08.093
44.    Ivan N. Bardasov Anastasiya U. Alekseeva Nykolay P. Dianov Oleg V. Ershov Novel fluorescent sensor for silver (I) based on the cinnamylidene derivatives of malononitrile trimer. J. of Mole Str.  2020; 1222.  128935. https://doi.org/10.1016/j.molstruc.2020.128935
45.    Huo B. Du M. Gong A. Li M. Fang L. Shen A. Lai Y. Bai X. Yang Y. A novel intramolecular cyclization-induced fluorescent “turn-on” probe for detection of Pd2+ based on Tsuji-Trost reaction. Anal. Methods. 2018; 10. 3475-3480. https://doi.org/10.1039/C8AY00965A
46.    Ren Z. Cao W. Tong W. The knoevenagel condensation reaction of aromatic aldehydes with malononitrile by grinding in the absence of solvents and catalysts. Synthetic Communications. 2002; 32(22): 3475–3479. https://doi.org/10.1081/SCC-120014780
47.    Zhao L. Li M. Liu M. Zhang Y. Wu C. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II)Journal of Hazardous Materials. 2016; 301(15): 233-241. https://doi.org/10.1016/j.jhazmat.2015.08.044

Recomonded Articles:

Author(s): S. Singh, P. K. Sharma, R. Dudhe, N. Kumar

DOI:         Access: Open Access Read More

Author(s): Prabhati Kumari Mahapatro, Ganngam Phaomei, Sagarika Pattnaik, Rajkumari Bindiya Devi, Ningombam Yaiphaba, Lingaraj Behera

DOI: 10.5958/0974-4150.2018.00068.8         Access: Open Access Read More

Author(s): Y.N.Ch. Ravi Babu, S.V.G.V.A. Prasad, M. Kiran Kumar, A. Suresh Kumar

DOI:         Access: Open Access Read More

Author(s): R. Parkavi, G. Madhan, K. Srinivasan, K. Sathishkumar, A. Chandramohan, K. Dinakaran

DOI: 10.52711/0974-4150.2022.00003         Access: Open Access Read More

Author(s): Panduragan Baskaran, Balaji Bathrinarayanan, Rajasekar Perumal, Syed Sheik Mansoor

DOI: 10.52711/0974-4150.2023.00072         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags