Author(s):
Andeouene Baou, Jean Bruno Bassiloua, Thomas Silou, Elie Douguirgue, Kouvourbe Kedeu, Taba Kalulu
Email(s):
thsilou@yahoo.fr
DOI:
10.52711/0974-4150.2022.00041
Address:
Andeouene Baou1,2,3, Jean Bruno Bassiloua2,3 Thomas Silou2,3*, Elie Douguirgue1, Kouvourbe Kedeu1, Taba Kalulu4
1Institute National des Sciences Agronomiques et des Technologies, Agroalimentaires de Lai(INSATAL) Tchad.
2Faculté des Sciences et Technique (UMNG) BP 69 Brazzaville Congo.
3Ecole Supérieure de Technologie des Cataractes (EPrES) BP 389 Brazzaville Congo.
*Corresponding Author
Published In:
Volume - 15,
Issue - 3,
Year - 2022
ABSTRACT:
The Cymbopogon flexuosus species introduced in Congo-Brazzaville (equatorial climate) to solve the low production problem of Cymbopogon citratus, a source of citral, was acclimatized in Chad (subtropical climate) for the same reasons. The plant was perfectly adapted with a very high production of biomass. Its low essential oil extraction yield (0.89% DM) compared to the Cymbopogon citratus local species (1.26%) is very largely balanced by its very high biomass productivity. The extraction of essential oil fits Milojevic's pseudo first order model with rate constant k = 0.0087 min-1 (R2 = 0.9816) for Cymbopogon flexuosus vs k = 0.0109 min-1 (R² = 0.922), for local C. citratus. It also fits Peleg's model with a kinetic constant k1 = 217.94 min %-1 and an extraction capacity constant K2 = 0.6022%-1, which leads to a pseudo first order kinetic constant of hydrodistillation k = k1/K2 = 0.0028 min-1. For local C. citratus, these values are respectively k1 = 108.94 min %-1; K2 = 0.4971%-1 and k = 0.0046 min-1 with R² = 0.9885. Michael Menton's model, which is also fitted, leads to the kinetic constant Km/Ymax = 237 min %-1 and the yield Ymax = 1.9% with R² = 0.9862, for C. flexuosus and Km/Ymax = 113.12 min %-1, Ymax = 2.1% (R² = 0.9952) for C. citratus. These results corroborate those obtained on the same species acclimatized in Congo-Brazzaville.
Cite this article:
Andeouene Baou, Jean Bruno Bassiloua, Thomas Silou, Elie Douguirgue, Kouvourbe Kedeu, Taba Kalulu. Kinetic modeling of Essential oil extraction from lemongrass acclimatized in Tandjilé in Chad. Asian Journal of Research in Chemistry. 2022; 15(3):228-4. doi: 10.52711/0974-4150.2022.00041
Cite(Electronic):
Andeouene Baou, Jean Bruno Bassiloua, Thomas Silou, Elie Douguirgue, Kouvourbe Kedeu, Taba Kalulu. Kinetic modeling of Essential oil extraction from lemongrass acclimatized in Tandjilé in Chad. Asian Journal of Research in Chemistry. 2022; 15(3):228-4. doi: 10.52711/0974-4150.2022.00041 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2022-15-3-10
REFERENCES:
1. Amenaghawon NA, Okhueleigbe KE, Ogbeide SE and Okieimen CO, 2014. Modelling the kinetics of steam distillation of essential oils from lemon grass (Cymbopogon spp) International Journal of Applied Science and Engineering 12 (2) : 107-115.
2. Baou AC, Manissa H Silou T and Chalchat JC, 2020. Pilot scale modeling of biomass and essential oil production from Cymbopogon nardus (L.) Rendle, acclimatized on the “plateau des Cataractes” in Congo-Brazzaville. J. Mater. Environ. Sci., 11(8):1315-1331.
3. Baou AC, 2021. Modélisation d’une unité semi-industrielle de production des huiles essentielles. Cymbopogon nardus acclimatées sur le plateau des Cataractes. Thèse de Doctorat d’Université, Université Marien Ngouabi, Brazzaville Congo.
4. Bellik, F.-Z., Benkaci-Ali, F., Alsafra, Z., Eppe, G., Tata, S., Sabaou, N., Zidani, R., 2019. Chemical composition, kinetic study and antimicrobial activity of essential oils from Cymbopogon schoenanthus L. Spreng extracted by conventional and microwave-assisted techniques using cryogenic grinding. Industrial Crops & Products, 139, 111505
5. Bucic-Kojic A, Mirela ST, Mate B and Darko V, 2007. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds, Journal of Food Engineering 8, 236-242.
6. Chan CH, Yusoff R, Ngoh GC, 2014. Modeling and kinetics study of conventional and assisted batch solvent extraction, Chemical Engineering Research and Design, 92:1169-1186,
7. Dao TP, Do HT, Le QK, Phap NVG, Bach LG, Muoi NV and Cang MH, 2020. Kinetic Studies on Extraction of Essential Oil from Lemongrass Leaves (Cymbopogon citratus) by Steam Distillation Industrial. Scale Asian Journal of Chemistry 32 (6) :1399-1403.
8. Desai M A, Parikh J, De AK, 2014. Modelling and optimization studies on extraction of lemongrass oil from Cymbopogon flexuosus (Steud,) Wats, Chemical Engineering Research and Design 92 : 793-803.
9. Desai M A, Parikh J, De AK, 2015Extraction of essential oil from lemongrass using microwave radiation: optimization comparative kinetics and biological studies. ACS Sustainable Chemistry Engineering 3(3):421-431.
10. Koul VK, Gandotra BM, Koul S, Ghosh S, Tikoo CL, Gupta AK, 2004. Steam distillation of lemon grass (Cymbopogon spp,), Indian Journal of Chemical Technology 11: 135-139.
11. Lutfi N.A.F, Atan M.F, Rahman N.A, Salleh S.F, Wahab N.A, 2016. Study on Mathematical Model In Simulating Cymbopogon Winterianus Essential Oil Extraction By Steam Distillation. Journal of Applied Science, Process Engineering, 3(1): 1-16.
12. Meziane IAA, Bali N, Belblidia NB, Abatzoglou N, Benyoussef E-Hadi, 2019. The first-order model in the simulation of essential oil extraction kinetics, Journal of Applied Research on Medicinal and Aromatic Plants, doi: https://doi.org/10.1016/j.jarmap.2019.100226
Milojevic SZ, Stojanovi TD, Palic R., Miodrag L., Lazic M., Vlada B. Veljkovic V., 2008. Kinetics of distillation of essential oil from comminuted ripe juniper (Juniperus communis L.) berries, Biochemical Engineering Journal, 39: 547–553.
13. Milojevic SZ, Radosavljevic DB, Pavicevic VP, Pejanov S, Veljkovic VB, 2013. Modeling the kinetics of essential oils from plant materials. Hem. Ind.; 843-850.
14. Mjeri J, Chakroun I, Abderraba M, Mejri M, 2014. Study of hydro-distillation process of Ruta chalpensis L essential Oil, Research Journal of Agriculture and Environmental Mangement 3 (4): 311-518.
15. Peleg M, 1988. An Empirical model for description of moisture sorption curves, Journal of Food Science, 53 (4): 1216- 1219.
16. Shafaeï SM, Masoumi AA, Roshan H, 2016. Analysis of water adsorption of bean etchickpea during soaking using Peleg model, Journal of the Saudi Society of Agriculture Sciences 15: 135 – 144
17. Silou T, Malanda M., Loubaki L., 2004. Optimisation de l’huile essentielles de Cymbopogon citratus grace à un plan factoriel 23. J. Food Eng. 219-223.
18. Sovová H, Aleksovski SA., 2006. Mathematical model for hydrodistillation of essential oils. Flavour and Fragrance Journal, 21(6): 881-889.