Author(s):
Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia
Email(s):
abdelrahmanebouafia@gmail.com
DOI:
10.52711/0974-4150.2023.00001
Address:
Nadia Ziani1,5, Khadidja Amirat2,5, Souhaila Meneceur3,5, Fatiha Mebarki4,5, Abderrhmane Bouafia3*
1Faculty of Science, Chemistry Department Badji Mokhtar University Annaba, Annaba, Algeria.
2Faculty of Science, Department of Chemistry University of Sétif 1 - Ferhat Abbas, El Bez, Setif 19000.
3Department of Process Engineering and Petrochemistry, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria.
4Faculty of Science and Technology, Department of material sciences, Amine Elokkal El hadjMoussa Eg Akhamouk University - Tamanrasset, Algeria.
5Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued El-Oued, Algeria.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
EU Directive for the Protection of Laboratory Animals mandates and encourages the use of alternative methods that could substitute, cut down on, and generally improve animal testing. Quantitative structure-activity relationship models (QSAR) as well as in vitro toxicity testing are among the most notable of such. QSARs are defined as computerized mathematical models that can utilize a compound’s (aromatic amine) biological activity—aquatic toxicity—to calculate or provide the experimental descriptors of the chemical structure of this compound. Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) are the approaches we use for the aim of predicting aquatic toxicity. The best models for two descriptors are the electrotopological descriptors derived from E-calc, and the partition coefficient derived by the Hyperchem software, applying a genetic algorithm—variable subset selection procedure. The important values of the statistical parameters obtained by the two approaches were as follows: By MLR: R2= 92.18, Q2 = 90.51, Q2ext= 95.26, F=188.5466, S = 0.1995. By ANN were: Q2 = 94.79, RMSE= 0.16, Q2ext= 91.71, RMSEext=0.18.
Cite this article:
Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia. Silico Methodologies Modelling of Aquatic Toxicity in Tetrahymena Pyriformis Via Aromatic Amines. Asian Journal of Research in Chemistry. 2023; 16(1):1-7. doi: 10.52711/0974-4150.2023.00001
Cite(Electronic):
Nadia Ziani, Khadidja Amirat, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia. Silico Methodologies Modelling of Aquatic Toxicity in Tetrahymena Pyriformis Via Aromatic Amines. Asian Journal of Research in Chemistry. 2023; 16(1):1-7. doi: 10.52711/0974-4150.2023.00001 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2023-16-1-1
REFERENCES:
1. Cassotti M, Ballabio D, Todeschini R, Consonni V. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas) SAR QSAR Environ Res. 2015; 26(3):217-243. doi:10.1080/1062936X.2015.1018938
2. Rewatkar P V, Kokil GR. QSAR Studies of Novel 1-and 8-Substituted-3-Furfuryl Xanthines: An Adenosine Receptor Antagonist Asian J Res Chem. 2010; 3(2):416-420
3. Dwivedi SD, Bharadwaj A, Shrivastava A. Application of Topological Descriptor: QSAR Study of Chalcone Derivatives Asian J Res Chem. 2010; 3(4):1030-1034
4. Bhardwaj S, Dubey S. Qsar and Docking Studies of Some Novel Piperine Analogues as Monoamine Oxidase Inhibitors 2022
5. Dubey S, Bhardwaj S, Parbhakaran P, Singh E. In silico Prediction of Pyrazoline Derivatives as Antimalarial agents Asian J Pharm Res. 2022; 12(2):119-124
6. Madhawai K, Rishipathak D, Chhajed S, Kshirsagar S. Predicting the Anti-Inflammatory Activity of Novel 5-Phenylsulfamoyl-2-(2-Nitroxy)(Acetoxy) Benzoic acid derivatives using 2D and 3D-QSAR (kNN-MFA) Analysis Asian J Res Pharm Sci. 2017; 7(4):227-234
7. Dixit S, Sikarwar AK. Modeling of Acute Toxicity of Phenol Derivatives using Computational Methods Asian J Res Chem. 2017; 10(5):626-628
8. Dighe NS, Shinde P, Anap H, Bhawar S, Musmade DS. QSAR Study and Synthesis of some new 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives as Anti-microbial and Anti-inflammatory Agents Asian J Pharm Res. 2014; 4(4):174-179
9. Ganatra SH, Patle MR, Bhagat GK. Studies of Quantitative Structure-Activity Relationship (QSAR) of Hydantoin Based Active Anti-Cancer Drugs Tc. 2011; 1(2.124):8-9351
10. Dutta S, Banik S, Sutradhar S, Dubey S, Sharma I. 4D-QSAR: New Perspectives in Drug Design Asian J Res Chem. 2011; 4(6):857-862
11. Sherikar AS. Quantitative Structure Activity Relationship of Some Substituted 2-Aminopyridines and Fused Bicyclic Rings as inhibitors of Nitric Oxide Synthases Asian J Res Chem. 2011; 4(10):1625-1629
12. Consonni V, Todeschini R. Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing/Volume II: Appendices, References John Wiley & Sons; 2009
13. Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M. MOBYDIGS, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm. Release 1.1 for windows 2009
14. Gasteiger J, Zupan J. Neural Networks in Chemistry Angew Chemie Int Ed English. 1993; 32(4):503-527. doi:https://doi.org/10.1002/anie.199305031
15. Schultz TW, Lin DT, Wilke TS, Arnold LM. Quantitative structure-activity relationships for the Tetrahymena pyriformis population growth endpoint: a mechanism of action approach Pract Appl Quant Struct relationships Environ Chem Toxicol. 1990:241-262
16. Laxmi D, Priyadarshy S. HyperChem 6.03 Biotech Softw Internet Rep Comput Softw J Sci. 2002; 3(1):5-9
17. Todeschini R, Consonni V, Mauri A, Pavan M. DRAGON; Version 5.3 Talete SRL Milan, IT. 2005
18. Tropsha A, Gramatica P, Gombar VK. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models QSAR Comb Sci. 2003; 22(1):69-77. doi:https://doi.org/10.1002/qsar.200390007
19. Ziani N, Amirat K, Messadi D. Inhibition of Tetrahymena pyriformis growth by Aliphatic Alcohols and Amines: a QSAR Study Synthèse Rev des Sci la Technol. 2014; 29:51-58
20. Ziani N, Amirat K, Messadi D. Chemometric modeling to predict aquatic toxicity of benzene derivatives in Pimephales Promelas Chafic-Thomas Salame P, ed. Manag Environ Qual An Int J. 2016; 27(3):299-312. doi:10.1108/MEQ-05-2015-0082
21. Bouaoune A, Lourici L, Haddag H, Messadi D. Inhibition of Microbial Growth by anilines: A QSAR study J Environ Sci Eng A. 2012; 1(5A)
22. Zine M, Bouakkadia A, Lourici L, Messadi D. Quantitative structure-property relationship studies for the prediction of the vapor pressure of volatile organic compounds J Serbian Chem Soc. 2019; 84(12):1405-1414. doi:10.2298/JSC190306059Z
23. Kiralj R, Ferreira MMC. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application J Braz Chem Soc. 2009; 20(4):770-787. doi:10.1590/S0103-50532009000400021
24. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect. 2003; 111(10):1361-1375. doi:10.1289/ehp.5758
25. Shen M, Béguin C, Golbraikh A, Stables JP, Kohn H, Tropsha A. Application of Predictive QSAR Models to Database Mining: Identification and Experimental Validation of Novel Anticonvulsant Compounds J Med Chem. 2004; 47(9):2356-2364. doi:10.1021/jm030584q
26. Sharma BK, Singh P, Pilania P, Sarbhai K, Prabhakar YS. CP-MLR/PLS directed QSAR study on apical sodium-codependent bile acid transporter inhibition activity of benzothiepines Mol Divers. 2011; 15(1):135-147. doi:10.1007/s11030-009-9220-2