Author(s):
Mrinmoy Kumar Chini, Navneet Kumar
Email(s):
navkchem@gmail.com
DOI:
10.52711/0974-4150.2025.00014
Address:
Mrinmoy Kumar Chini1, Navneet Kumar2*
1Department of Applied Sciences (Chemistry), Galgotias College of Engineering and Technology, Greater Noida - 201306, Uttar Pradesh, India.
2Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Moradabad - 244001, Uttar Pradesh, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 2,
Year - 2025
ABSTRACT:
The work presents a facile method for the preparation of oxygen reduction reaction (ORR) catalysts through the electrochemical polymerisation of small molecule containing pyridinic and imine-type nitrogen atoms with lone-pair electrons to perform more effective ORR investigated in alkaline KOH medium. The PEDOT modified gold electrode showed a lower activity towards the ORR than the PEPE modified one owing to the presence of N containing pyridine units in the polymeric backbone structure. On further note, PEPE-CGQDs modified electrodes did not show any improvement in ORR activity compared to PEPE alone due to the ineffectiveness of CGQDs towards the development of a superior ORR catalyst.
Cite this article:
Mrinmoy Kumar Chini, Navneet Kumar. Electrochemically grown Polymer-graphene Quantum dot composites for Oxygen Reduction Reaction. Asian Journal of Research in Chemistry.2025; 18(2):87-1. doi: 10.52711/0974-4150.2025.00014
Cite(Electronic):
Mrinmoy Kumar Chini, Navneet Kumar. Electrochemically grown Polymer-graphene Quantum dot composites for Oxygen Reduction Reaction. Asian Journal of Research in Chemistry.2025; 18(2):87-1. doi: 10.52711/0974-4150.2025.00014 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2025-18-2-5
REFERENCES:
1. Markovic, N. M.; Schmidt, T. J.; Stamenkovic, V.; and Ross, P. N. (2001). Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 1, 105−116.
2. Gewirth, A. A.; and Thorum, M. S. (2010). Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges. Inorg. Chem., 49, 3557−3566.
3. Bruce, P. G.; Freunberger, S. A.; and Hardwick, L. J. Li−O2 and Li−S batteries with high energy storage. (2012). Nat. Mater., 11, 19−29.
4. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K. Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K. I.; and Iwashita, N. (2007). Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev., 107, 3904.
5. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; and Markovic, N. M. (2007). Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater., 6, 241.
6. Zhang, S.; Yuan, X.; Wang, H.; Mérida, W.; Zhu, H.; Shen, J.; Wu, S.; and Zhang, J. (2009). Int. J. Hydrogen Energy, 34, 388.
7. Uhm, S.; Jeong, B.; and Lee, J. (2011). A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim. Acta, 56, 9186.
8. Olson, T. S.; Pylypenko, S.; Atanassov, P.; Asazawa, K.; Yamada, K.; and Tanaka, H. (2010). Anion-Exchange Membrane Fuel Cells: Dual-Site Mechanism of Oxygen Reduction Reaction in Alkaline Media on Cobalt−Polypyrrole Electrocatalysts. J. Phys. Chem. C, 114, 5049.
9. Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, l.; and Qu, L. (2012) Nitrogen-Doped Graphene Quantum Dots with Oxygen-rich Functional Groups. J. Am. Chem. Soc., 134, 15−18.
10. He, G.; Song, Y.; Liu, K.; Walter, A.; Chen, S.; and Chen, S. (2013). Oxygen Reduction Catalyzed by Platinum Nanoparticles Supported on Graphene Quantum Dots. ACS Catal. 3, 831−838.
11. Sudhakar, V.; Singh, A. K.; and Chini, M. K. (2020). Nano porous reduced graphene oxide and polymer composites as efficient counter electrodes in dye sensitized solar cells. ACS Applied Electronic Materials, 2, 626.
12. Chini, M. K.; Das, C.; and Chatterjee, S. (2016). F and CF3 substituted solution processable oligo paraphenylenevinylene for ambipolar and hole-transporting organic field effect transistors. Chemical Physics Letters, 657, 26–32.
13. Dharmapurikar, S. S.; Arulkashmir, A.; Mahale, R. Y.; and Chini, M. K. (2017). Synthesis of amphiphilic isoindigo copolymers for organic field effect transistors: A comparative study. J. Appl. Polym. Sci., 134, 45461
14. Ohtsubo, N.; Gohda, S.; Gotoh, K.; Sato, S.; and Yamada, Y. (2023). Bottom-up synthesis of pyridinic nitrogen-containing carbon materials with C–H groups next to pyridinic nitrogen from two-ring aromatics. Carbon, 207, 270-291.
15. Chini, M. K.; and Chatterjee, S. (2017). Hydrothermally reduced nano porous graphene-polyaniline nanofiber composites for supercapacitor. FlatChem, 1, 1-5.