Author(s):
Avishek Saha, Sanjay Roy
Email(s):
sanjayroyp@gmail.com
DOI:
10.52711/0974-4150.2025.00022
Address:
Avishek Saha1,2, Sanjay Roy1*
1Department of Chemistry, School of Sciences, Netaji Subhas Open University, West Bengal, India.
2Department of Chemistry, Srikrishna College, Bagula, Nadia, Pin- 741502, West Bengal, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
Despite extensive research on glycine, its solubility in binary mixtures and aqueous solutions remains underexplored from both qualitative and quantitative perspectives. This article aims to fill that gap by presenting comprehensive data on glycine's solubility, including our own measurements and literature findings. We also report the corresponding Gibbs free energy transfer in various mixtures, including electrolytes, at different temperatures. Our results are analyzed within a thermodynamic framework, considering the physical and chemical factors that influence solubility, with the goal of improving pharmaceutical formulations.
Cite this article:
Avishek Saha, Sanjay Roy. Glycine Solubility and Thermodynamic Insights for Enhancing Pharmaceutical Formulation Efficiency through Qualitative and Quantitative Analysis of Solvent Systems. Asian Journal of Research in Chemistry.2025; 18(3):135-1. doi: 10.52711/0974-4150.2025.00022
Cite(Electronic):
Avishek Saha, Sanjay Roy. Glycine Solubility and Thermodynamic Insights for Enhancing Pharmaceutical Formulation Efficiency through Qualitative and Quantitative Analysis of Solvent Systems. Asian Journal of Research in Chemistry.2025; 18(3):135-1. doi: 10.52711/0974-4150.2025.00022 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2025-18-3-4
6. REFERENCES:
1. R. Carta, J. Chem. Eng. Data 44 (1999) 563.
2. A. Bhattacharyya, S.K. Bhattacharya. J. Solut. Chem. 42 (2013) 2149.
3. R. Sinha, S.K. Bhattacharya, K.K. Kundu. J. Mol. Liq. 122 (2005) 95.
4. S. Roy, K. Mahali, S. Mondal, B.K. Dolui. Russ. J. Phys. Chem. A 89 (2015) 654.
5. F. Sanda, T. Endo, Macromol. Chem. Phys. 200 (1999) 200.
6. A. Jouyban, A. Handbook of Solubility Data for Pharmaceuticals; CRC Press: Boca Raton, FL, 2010.
7. Morwood, T. CAPE, Eureka Project 2311, 2001.
8. S. M. Thombre, B.D. Sarwade, J. Macromol. Sci., Part A: Pure Appl. Chem. 42 (2005) 1299.
9. S. Roy, P.S. Guin, K. Mahali, A. Hossain, B.K. Dolui. J. Mol. Liq. 234 (2017)124.
10. A. Hossain, S. Roy, S. Ghosh, S. Mondal, B.K. Dolui, RSC Adv. 5 (2015) 69839.
11. J. Dressman, C. Reppas, Adv. Drug Delivery Rev. 59 (2007) 531.
12. L.I.N. Tomé, S.P. Pinho, M. Jorge, J.R.B. Gomes, A.P. Coutinho, J. Phys. Chem. B 117 (2013) 6116.
13. Venkata Subba Rao Mushini, Ananta Ramam Veluri, Muralidhara Rao Volety. Asian J. Research Chem. 2010; 3(2): 442-446.
14. Mushini Venkata Subba Rao, Volety Muralidhara Rao, Veluri Ananta Ramam. Asian J. Research Chem. 2011; 4(10): 1612-1615.
15. Sanjibita Das, Upendra N. Dash. Asian J. Research Chem. January 2012; 5(1): 53-56.
16. M. Kiran Kumar, P. Sreeram Naik, Y.N.Ch Ravi Babu, A. Suresh Kumar. Asian J. Research Chem. February 2014; 7(2): 159-162.
17. Ramachandra Reddy A, Murugan V, Prema Kumari. Research J. Pharm. and Tech. 2019; 12(10): 4946-4952.
18. A. R. Chabukswar, S. C. Jagdale, P. M. Gandhi Research J. Pharm. and Tech 2020; 13(2): 645-650.
19. A. Hossain, S. Roy and B.K. Dolui, J. Mol. Liq, 232 (2017)332.
20. Patel Dhaval V, Patel Biraju D, Patel Nilesh K, Sheth Navin R, Dabhi Mahesh R, Dudhrejiya Ashvin V. Asian J. Management Jan. – Mar. 2010; 1(1): 1-3.
21. A. Suneetha, B. Chandra Sekhar, K. Sudheer Babu. DOE Asian Journal of Pharmaceutical Analysis. 2022; 12(1): 35-2.
22. Shakti Prasanna Sahoo, Bharat Bhusan Subudhi, Rachana Swain. Asian J. Research Chem. Sept, 2011; 4(9): 1485-1488.
23. K. Padmalochana, P. Prema. Research J. Pharm. and Tech 2016; 9(8): 1217-1222.
24. S. Roy, P.S. Guin, S. Mondal, S. Ghosh, B.K. Dolui, J. Mol. Liq. 222 (2016) 313–319.
25. A. Hossain, S. Roy, J. Mol. Liq. 249 (2018) 1133–1137.
26. E.R.B Smith, and P.K. Smith, J. Biol. Chem., 117 (1937) 209; 121 (1937) 607; 132 (1940) 57.
27. H.D. Ellerton, G. Reinfelds, D.E. Mulcahy, and P.J. Dunlop, J. Phys. Chem., 68 (91964) 398.
28. Y. Nozaki and C. Tanford, J. Biol. Chem., 246 (1971) 2211.
29. J. Lu, X-J. Wang, X. Yang, and C-B. Ching. 51 (2006) 1593.
30. H.A. Levy, R.B. Corey, J. Am. Chem. Soc. 63 (1941) 2095
31. W. Z. Wang, W. X. Zheng, X. M. Pu, J. Mol. Struct. (Theochem) 618 (2002)235.
32. Mo, X, Zhong., Z., Wang D. and Sun, X. J. Agric. Food Chem. 54 (2006) 7589.
33. D. Fuchs, J. Fischer, F. Tumakaka, and G. Sadowski, Ind. Eng. Chem. Res. 45 (2006) 6578.
34. S. Roy, K. Mahali, and B. K. Dolui. Biochem. Ind. J. 4 (2010): 71.
35. S. Roy, P.S. Guin, K. Mahali, B.K. Dolui, J. Mol. Liq. 218, 316 (2016).
36. Y. Marcus, Ion Solvation, John Wiley and Sons, New York, 1985.
37. S. Roy, A. Hossain, B.K. Dolui, J. Chem. Eng. Data 61 (2016) 132.
38. A. V. Kustov and V. P. Korolev, Russ. J. Phys. Chem. A. 81, (2007)193.
39. H.C. Tseng, C.Y. Lee, W.L. Weng, I.M. Shiah, Fluid Phase Equilib. 285 (2009) 90.
40. L.A. Ferreira, E.A. Macedo, S.P. Pinho, Ind. Eng. Chem. Res. 44 (2005) 8892.
41. C. Held, T. Reschke, R. Müller, W. Kunz, G. Sadowski, J. Chem. Thermodyn. 68 (2014)1