ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Alok Awasthi

Email(s): awasthialok25july@gmail.com

DOI: 10.52711/0974-4150.2023.00046   

Address: Alok Awasthi*
Department of Chemistry, Govt. Degree College, Bakhha Kheda, Unnao, U.P., India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023


ABSTRACT:
Because of the inbuilt bio-accumulation mechanism several plants have shown a remarkable capability of accumulation of metals from contaminated soil into roots, tubers and upper parts of the plants. This study was undertaken to evaluate the bio-accumulation potential of a wild grass, Parthenium hysterophorus L., Asteraceae grown on the barren land along with the National highways for Cd, Cr, Cu, Ni and Pb by determining the bio-accumulated levels of these metals in the samples of soil, roots and shoot of the plant. The various bio-concentration factors (BCFs), translocation factors (TFs) and Biological accumulation coefficients (BACs) for studied metals were evaluated, to find out the suitability of Parthenium plant for phyto-extration of the studied metals. The order of observed levels of heavy metals in the samples of soil, root and shoots were: Pb (8.12±0.48) > Cr (7.18± 0.39) > Cu (5.64± 0.26) > Ni (3.91± 0.21) > Cd (1.31± 0.08) and Pb (6.67± 0.34) > Cu (6.11 ±0.27) >Cr (6.05± 0.23) >Ni (4.14± 0.18) > Cd (1.42± 0.11) and Pb (7.22±0.29) > Cr (5.97±0.23)>Cu (5.96 ±0.25)>Ni (5.13±0.21) > Cd (1.70±0.14 mg/Kg, dw), respectively. The soil to roots bio-concentration factors, BCFRoot for studied metals were: Cd (1.08) > Cu (1.08) >Ni (1.06) > Cr (0.84)>Pb (0.82). The order of root to shoot translocation factors, TFShoot for these metals in Parthenium hysterophorus L., was: Ni (1.24) > Cd (1.20) > Pb (1.08) > Cr (0.99~1.00)> Cu (0.98~1.00). The various soil to shoot biological accumulation coefficients, BACShoot for studied metals in Parthenium plant were, Ni (1.31) > Cd (1.30)> Cu (1.06) > Pb (0.89) >Cr (0.83), respectively. Comparatively higher BCF >1, TF >1 and higher BAC values for metals under study suggested that the plant Parthenium hysterophorus L has potential to translocate these metals to the above ground parts of the plants and thereby their phyto-extraction from contaminated soil.


Cite this article:
Alok Awasthi. Bio- accumulation of Cd, Cr, Cu, Ni and Pb in a wild grass, Parthenium hysterophorus L. Asteraceae, growing naturally on barren land and evaluation of phyto-extraction potential of the plant for studied metals. Asian Journal of Research in Chemistry 2023; 16(4):277-4. doi: 10.52711/0974-4150.2023.00046

Cite(Electronic):
Alok Awasthi. Bio- accumulation of Cd, Cr, Cu, Ni and Pb in a wild grass, Parthenium hysterophorus L. Asteraceae, growing naturally on barren land and evaluation of phyto-extraction potential of the plant for studied metals. Asian Journal of Research in Chemistry 2023; 16(4):277-4. doi: 10.52711/0974-4150.2023.00046   Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2023-16-4-5


REFERENCES:
1.    Singh S. et al, Heavy metals accumulation and distribution pattern in different vegetable crops Journal of Environmental Chemistry and Ecotoxicology. 2012 February; Vol. 4(10):170-177, doi:10.5897/JECE11.076.
2.    Singh V. P., Toxic Metals and Environmental Issues; Sarup and Sons, New Delhi, 2005.
3.    Shah Vijendra, Daverey Achlesh, Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil Environmental Technology and Innovation 2020 May; Vol. 18: 100774. doi.org/10.1016/j.eti.2020.100774
4.    Agrawal, SB et al., Bioaccumulation of heavy metals in vegetables: A threat to human life. Terrestrial and Aquatic Environmental Toxicology. 2007 August; Vol. 1(2):13-22.
5.    Singh Ramesh et al., Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 2010 July. Vol, 31: 421-430.
6.    Kulshrestha Shail, Awasthi Alok and Dabral S. K., Assessment of Heavy metals in the industrial effluents, tube-well and municipal supplied water of Dehradun, India, J. Envn. Sci and Engg., 2013 July; Vol. 55(3):290-300. ISSN: 0367-827.
7.    Lasat Mitch M. Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual. 2002 Jan-Feb; Vol. 31(1): 109-120.
8.    Kumar Adarsh, et al., Soil Pollution and Plant Efficiency Indices for Phytoremediation of Heavy Metalloids: Two-Decade Study (2002–2021); Metals. 2022 August; Vol. 12(8):1330. doi.org/10.3390/met12081330.
9.    Cheng, Shuiping. Heavy metals in plants and phytoremediation. Environ Sci and Pollut Res 2003; Vol.10: 335–340. doi.org/10.1065/espr2002.11.141.3
10.    Ali Hazrat, Khan Ezzat and Sajad Muhammad Anwar, Phytoremediation of heavy metals—Concepts and applications, Chemosphere, May 2013; Vol. 91: 869-881. doi.org/10.1016/j.chemosphere.2013.01.075
11.    Tariq Faheem, Asim Muhammad, Ahmad Izhar, Wali Sher, Rahman Khushnood Ur and Bibi Hafsa, Spectrometric analysis of heavy metal in Parthenium hysterophorus medicinal plant collected from district Karak and Peshawar, Pure Appl. Biol., 2020 June; Vol. 9(2): 1376-1384. doi.org/10.19045/bspab.2020.90144
12.    Maor Matzrafi et al, Distribution and Biology of the Invasive Weed Parthenium hysterophorus L. in Israel, Front. Agron, 2021June; Vol. 3. doi.org/10.3389/fagro.2021.639991
13.    Singh HP, Batish JK et al., Assessment of allelopathic properties of Parthenium hysterophorus residues. Agric Ecosys Environ. 2003 May; Vol. 95 (2-3): 537–541. doi.org/10.1016/S0167-8809 (02)00202-5
14.    Hemen Sarma; Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Technology. Journal of Environmental Science and Technology. 2011; Vol. 4(2): 118-138, 2011. doi: 10.3923/jest.2011.118.138
15.    United States Environmental Protection Agency (USEPA), 2000; Introduction to Phytoremediation, Washington, DC., USA.
16.    APHA, Standard Methods for the Examination of Water and Wastewater, 21st Ed., Washington DC, 2005.
17.    J. Benton Jones Jr ; Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press, 2001.
18.    Ahmad, Anwar; Al-Othman, Ahmed A. S, Remediation rates and translocation of heavy metals from contaminated soil through Parthenium hysterophorus . Chemistry and Ecology, 2014 January; Vol. 30(4):317-327. doi.org/10.1080/02757540.2013.871269
19.    Malik R N, Husain, S Z. and Nazir I. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany. 2010 February; Vol. 42 (1): 291-301. ISSN 0556-3321
20.    Bashir Mehwish, Khalid Sofia et al., Assessment of Selected Heavy Metals Uptake from Soil by Vegetation of Two Areas of District Attock, Pakistan, Asian Journal of Chemistry. 2014 February; Vol. 26(4): 1063-1068. doi.org/10.14233/ajchem.2014.15853
21.    Subha M and Srinivas N, Phytoremediation Potential of Weedy plants in Heavy Metal Contaminated Benthic Lake sludge; International. Journal of Applied Engineering Research. 2017 November; Vol. 12 (14): 4534-4538, ISSN 0973-4562
22.    Kabata-Pendias Alina and Pendias Henryk; Trace Elements in Soil and Plants; Boca Raton, 3rd Ed., CRC Press Inc, August 2000.
23.    Ghosh Moyukh and Singh S P. A Review on Phytoremediation of Heavy Metals and Utilization of its by products. Applied Ecology and Environmental Research. 2005July; Vol. 3: 1-18. doi:10.15666/AEER/0301001018
24.    Joonki.Yoon, Xinde. Cao et al., Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site, Sci. Total Environ. 2006 September; Vol. 368 (2-3): 456-464. doi: 10.1016/j.scitotenv.2006.01.016.
25.    WHO, 2007. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues, Geneva, World Health Organization.
26.    Samreen and Khan A. A.; Parthenium hysterophorus: Growth Response to Chromium and Nickel Application and Phytoremediation Potential; Haya: Saudi J. Life Sci. 2017October; Vol. 2 (7):262-268. doi: 10.21276/haya.2017.2.7.6
27.    Cui, Shuang, Zhou Quixing and Chao, Lei. Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 2007 January; Vol. 51:1043-1048. doi 10.1007/s00254-006-0373-3
28.    Li, MS, Luo YP and Su ZY. Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environmental Pollution, 2007 May; Vol. 147 (1): 168-175. doi: 10.1016/j.envpol.2006.08.006.
29.    Maiti, Subodh Kumar and Jaiswal Shishir. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: A field study from Santaldih thermal power plant, West Bengal, India, Environ Monit Assess. 2008January; Vol. 136 (1- 3):355-370. doi: 10.1007/s10661-007-9691-5. 70.
30.    Sanghmitra K., Rao P.V.V. Prasada and Naidu G. R. K., Heavy metal tolerance of weed species and their accumulations by phytoextraction, Indian Journal of Science and Technology. 2011March; Vol. 4 (3): 285-290. ISSN: 0974- 6846

Recomonded Articles:

Author(s): Suha K. Al-Mosawi, Hanan A. Al-Hazam, Abbas F. Abbas

DOI: 10.5958/0974-4150.2019.00031.2         Access: Open Access Read More

Author(s): Arun Kumar, Vinita Gupta, Sanchita Singh, Y.K. Gupta

DOI: 10.5958/0974-4150.2017.00038.4         Access: Open Access Read More

Author(s): Ram C. Senwar, Krishna K. Rathore, Anita Mehta

DOI: 10.5958/0974-4150.2017.00022.0         Access: Open Access Read More

Author(s): Tuly Paul, Faruk Hossen, Kudrat-E-Zahan, Masuqul Haque, Saddam Hossain, Rausan Zamir, Ali Asraf

DOI: 10.5958/0974-4150.2020.00052.8         Access: Open Access Read More

Author(s): Virupakshi Prabhakar, Kondra Sudhakar Babu, L.K. Ravindranath, M. Sahanoor Basha, J. Latha

DOI: 10.5958/0974-4150.2017.00012.8         Access: Open Access Read More

Author(s): Shravani S. Pawar, Sachin H. Rohane

DOI: 10.5958/0974-4150.2021.00014.6         Access: Open Access Read More

Author(s): Nachiket S. Dighe, Priyanka R. Varade, Ganesh S. Shinde, Priya S. Rao

DOI: 10.5958/0974-4150.2019.00028.2         Access: Open Access Read More

Author(s): Hunasnalkar Shivraj G, Shaikh Gazi, Patil SM, Surwase Ulhas S

DOI:         Access: Open Access Read More

Author(s): S.B. Junne, Archana B. Kadam, Archana Y. Vibhute, S.L. Shinde, R.B. Patil, Y.B. Vibhute

DOI:         Access: Open Access Read More

Author(s): SR Pattan, NS Dighe, SA Nirmal, AN Merekar, RB Laware, HV Shinde, DS Musmade

DOI:         Access: Open Access Read More

Author(s): B. Balaswami, P. Venkata Ramana, B. Subba Rao, P. Sanjeeva

DOI: 10.5958/0974-4150.2018.00023.8         Access: Open Access Read More

Author(s): K.P. Beena, G. Sathya Pooja

DOI: 10.52711/0974-4150.2022.00030         Access: Open Access Read More

Author(s): Tauseef Shaikh, Atar Mujum , Khan Wasimuzzama, Rukhsana A Rub

DOI:         Access: Open Access Read More

Author(s): Anup Bobde, Bhushan Sonchal, Shamim Momin

DOI:         Access: Open Access Read More

Author(s): Sindhu. T. J, Akhilesh K. J, Anju. Jose, Binsiya K. P, Blessy Thomas, Elizabeth Wilson

DOI: 10.5958/0974-4150.2020.00026.7         Access: Open Access Read More

Author(s): Shashi Ravi Suman Rudrangi, Vijaya Kumar Bontha, Venkata Reddy Manda, Srinivas Bethi

DOI:         Access: Open Access Read More

Author(s): Pankaj Baboo, Girendra Gautam, S.K. Gupta

DOI: 10.5958/0974-4150.2017.00039.6         Access: Open Access Read More

Author(s): KP Bhusari, ND Amnerkar, PB Khedekar, MK Kale, RP Bhole

DOI:         Access: Open Access Read More

Author(s): Sapna Tyagi, Tanveer Alam, Mohd Azhar Khan, Hina Tarannum, Neha Chauhan

DOI: 10.5958/0974-4150.2018.00092.5         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags