ISSN

0974-4150 (Online)
0974-4169 (Print)


Author(s): Yamina Benkrima, Abdelkader Souigat, Yassine Chaouche, Zineb Korichi, Mohammed Elbar Soudani, Assia Belfar

Email(s): benkrimayamina1@gmail.com

DOI: 10.52711/0974-4150.2022.00049   

Address: Yamina Benkrima1*, Abdelkader Souigat1, Yassine Chaouche2, Zineb Korichi1, Mohammed Elbar Soudani3, Assia Belfar1
1Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria.
2Larbi Tebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique, Route de Constantine 12002 Tebessa, Algeria.
3Laboratoire de Développement des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes, Faculté des Mathématiques et des Sciences de la Matière, Université Kasdi Merbah Ouargla, Ouargla 30000, AlgérieTebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique, Route de Constantine 12002 Tebessa, Algeria.
*Corresponding Author

Published In:   Volume - 15,      Issue - 4,     Year - 2022


ABSTRACT:
This search paper is focus on the investigation of the most stability structures of Pt3 and Cu3 clusters adsorbed on ZnO (000 ¯1) surfaces in the Wurtzite stable structure. The results are obtained by using the Density Function Theory (DFT). All the calculations are performed using the Gradient Generalized Approximation to describe the exchange correlation term in SIESTA code. From this work we found new structures of Pt3 and Cu3 clusters with lowest energy. Also we have calculated the binding energy, relaxation interlayer for each cluster, bond lengths, vertical ionization potential PIv and the density of states DOS. Through the results we found that the Pt3 cluster is more stable than Cu3 cluster and confirmed by the DOS, in the other hand the ZnO-O surface is more stable than ZnO-Zn surface. The computed electron structure and DOS illustrate that the Pt3/ZnO and Cu3/ZnO clusters adsorbed on ZnO-O surfaces display metallic characteristics.


Cite this article:
Yamina Benkrima, Abdelkader Souigat, Yassine Chaouche, Zineb Korichi, Mohammed Elbar Soudani, Assia Belfar. Ab initio Calculations of Structural and Electronic Properties of Pt3 and Cu3 clusters adsorbed on ZnO(000 ̅1). Asian Journal of Research in Chemistry. 2022; 15(4):272-8. doi: 10.52711/0974-4150.2022.00049

Cite(Electronic):
Yamina Benkrima, Abdelkader Souigat, Yassine Chaouche, Zineb Korichi, Mohammed Elbar Soudani, Assia Belfar. Ab initio Calculations of Structural and Electronic Properties of Pt3 and Cu3 clusters adsorbed on ZnO(000 ̅1). Asian Journal of Research in Chemistry. 2022; 15(4):272-8. doi: 10.52711/0974-4150.2022.00049   Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2022-15-4-6


REFERENCES:
1.    Goldberger J, Sirbuly DJ, Law M, Yang P. ZnO nanowire transistors. J. Phys. Chem B. 2005; 109(9): 9-14.doi.org/ 10.1021/jp0452599
2.    Keis K, Vayssieres L, Lindquist SE, Hagfeldt A. Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO. Phys. Chem B. 2001; 105(17):3350-3352. doi.org/10.1021/jp010026s
3.    Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004; 84: 3654-3656. doi:10.1063/1.1738932
4.    Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002; 14(2): 158-160. doi.org/10.1002/1521-4095(20020116)
5.    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V.  Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells. 2003; 77(1):65-82. doi.org/10.1016/S0927-0248(02)00255-6
6.    Varughese G, Crysty VG, Praveen G, Usha KT, Kumar AS.  Characterization and Elastic properties of wurtzite ZnO: Ce Nanocrystallites. Asian J. Research Chem. 2015; 8(3):183-189. doi:10.5958/0974-4150.2015.00033.4
7.    Arora Ak, jaswal VS,Bala R. Metal/Mixed Metal Oxides and their Applications as Catalyst. Asian J. Research Chem .2018;(6): 893-899. dOI:10.5958/0974-4150.2018.00155.4
8.    Sangari NU. A Brief Review on the Applications of ZnO and Tio2 in Photocatalysis and their Modification with β-Cyclodextrin. Asian J. Research Chem. 2018;(11):681-690. doi :10.5958/0974-4150.2018.00121.9.
9.    Kokate K.K, Kulkarni S, Bhandarkar S.E. Synthesis, Characterization of PEDOT-Metal Oxides Nanocomposites and use of PEDOT-ZnO nanocomposite as the Photoanode in Dye sensitized solar cells (DSSC). Asian J. Research Chem. 2018; 11(1):91-102.doi:10.5958/0974-4150.2018.00020.2
10.    Arora A.K, Metal/ Mixed Metal Oxides and Their Applications as Sensors. Asian J. Research Chem. 2018; 11(2):497-504, doi: 10.5958/0974-4150.2018.00089.5
11.    Sehar S, Amiza,  Khan I.H. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2): doi: 10.52711/2231-5691.2021.00024
12.     Ananthalakshmi R, Xavier Rajarathinam S.R,  Sadiq A.M. Antioxidant activity of ZnO Nanoparticles synthesized using Luffa acutangula peel extract. Research J. Pharm and Tech. 2019; 12(4):1596-1572.doi.10.5958/0974 360X.2019.00260.9
13.    Devi B, Madhavi B, Raghava Sharma G.V. Multi Component Reactions (MCR): Nano ZnO catalysed efficient synthesis of Novel Thiazolidinones. Asian J. Research Chem.2019; 12(6):317-321.doi.10.5958/0974-4150.2019.00058.0
14.    Kamal BAF, Mahdi AS, Ahmed AA, Ali DA,. Dawood KM. Adsorption Isotherms, Kinetics and Thermodynamic studies of Vat Brown 16 Dye using ZnO and Nano-ZnO Particles. Research j. Pharm and Tech. 2018; 11( 9):4613-4618.doi.10.5958/0974-360X.2018.00735.7
15.    Kulkarni S, Asian Journal of Pharmaceutical Research j. Pharm and Tech Lukose RM. Toxic Effect of Nanoparticles of Metals (Pb,Cd, Ag,Mn,Fe and Zn) and Metal Oxides (ZnO, CuO,TiO2 and CeO2) in Human Body. Asian J. Research Chem.2013; 6(12):1179-1182.doi. Not Available
16.    Hu J, Guo WP, Shi XR, Li BR, Wang JG. Copper deposition and growth over ZnO nonpolar (1010) and (1120) surfaces: a density functional theory study. J. Phys. Chem. C. 2009; 113():7227-7233. doi.org/10.1021/jp809517f
17.    Ney V, Ye S, Kammermeier T, Ney A, Zhou H, Fallert J, Kalt H, Lo FY, Melnikov A, Wieck AD. Structural, magnetic, and optical properties of Co-and Gd-implanted ZnO (0001) substrates. J. Appl. Phys. 2008; 104(8):083904-083910. doi.org/10.1063/1.3000452
18.    Lazcano P, Batzill M, Diebold U, Haberle P. Oxygen adsorption on Cu∕ZnO(0001)-Zn. Phys. Rev B. 2008; 77(3):035435-035443. doi.10.1103/PhysRevB.77.035435
19.    Phala NS, Klatt G, van Steen E, French SA, Sokol AA, Catlow CRA. The nature of the oxidation states of gold on ZnO. Chem. Chem. Phys. 2005; 7(12) 2440-2445. doi: 10.1039/B501266J.
20.    Campbell CT. Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf. Sci. Rep. 1997; 27(1):1-111.doi. 10.1016/S0167-5729(96)00011-8
21.    Yoshihara J, Parker SC, Campbell CT. Island growth kinetics during vapor deposition of Cu onto the Zn-terminated ZnO(0001) surface. Surf. Sci. 1999; 439(1-3) 153-62. doi.org/10.1016/S0039-6028(99)00752-9
22.    Freund HJ. Clusters and islands on oxides: From catalysis via electronics and magnetism to optics. Surf. Sci. 2002; 500(1-3):271-299.doi. 10.1016/S0039-6028(01)01543-6
23.    Haruta M. When Gold Is Not Noble: Catalysis by Nanoparticles. Chem. Rec. 2003; 3(2):75-87. doi.org/10.1002/tcr.10053.
24.    Nakajima H, Mori T, Watanabe M. Ultraviolet emission blueshift of ZnO related to Zn. J. Appl. Phys. 2007; 101(12): 126103-.doi.org/10.1063/1.1757649
25.    Subramanian V, Wolf  EE, Kamat PV. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004; 126(15): 4943-4950.doi.org/10.1021/ja0315199
26.    Parthasarathi Bera, Vohs J M. Growth and structure of Pd films on ZnO(0001). j. chem.phys. 2006; 125(16):164713, doi.org/10.1063/1.2363186
27.    Martins JBL, Longo E, Taft CA. CO2 and NH3 interaction with ZnO surface: An AM1 study. Int. J. Quant. Chem. 1998; 70(2):367-374.doi.org/10.1002/(SICI)1097-461X
28.    Dai XQ, Yan HJ, Wang JL, Liu YM, Yang ZX, Xie MH. The Effect of Cu on O Adsorption on a ZnO(0001) Surface: A First-Principles Study. J. Phys. Condens. Matter. 2008; 20(9): 095002.doi.org/10.1088/0953-8984/20/9/095002
29.    Persson P, Ojamäe L. Periodic Hartree–Fock study of the adsorption of formic acid on ZnO (1010). Periodic, Chem. Phys. Lett. 2000; 321(3-4): 302-308. doi.org/10.1016/S0009-2614(00)00347-X
30.    Gyorgy E, Santiso J, Figueras A, Giannoudakos A, Kompitsas M, Mihailescu IN, Ducu C. Au cluster growth on ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 2006; 252(13):4429-4432.doi.10.1016/j.apsusc.2005.07.148
31.    Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev B. 1990; 41(11); 7892- 7895.doi.org/10.1103/ 41.7892
32.     Perdew JP, Burke SM, Ernzerhof H. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996;77(18):3865-3869.doi.org/10.1103/PhysRevLett.77.3865
33.    Sánchez - Portal D, Ordejón P, Artacho E, Soler JM. Density-Functional Method for Very Large Systems with LCAO Basis Sets. Int. J. Quant. Chem. 1997; 65(5):453-461. doi.org/10.1002/(SICI)1097
34.    Bates CH, White WB, Roy R. New High-Pressure Polymorph of Zinc Oxide. Science. 1962; 137(3534):993-996.doi.org/10.1126/science.137.3534.993
35.    Tafoughalt MA, Samah M. Density functional investigation of structural and electronic properties of small bimetallic silver–gold clusters. Physica B. 2012;407(12):2014-2024.doi 10.1016/j.physb.2012.01.131
36.    Corain B, Schmid G, Toshima N. Metal nanoclusters in catalysis and materials science. Elesvier. 2008. doi.org/10.1016/B978-0-444-53057-8.X5001-6
37.    Bunn CW. The lattice-dimensions of zinc oxide. Proceedings of the Physical Society. 1935; 47(5): 835-842. doi:10.1088/0959-5309/47/5/307
38.    Khan AA. X-ray determination of themal expansion of zinc oxide. Acta Crystallographica Section A. 1968; 403(24).doi.10.1107/s0567739468000793.
39.    Ozgur U, Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V,. Cho SJ, Morkoc H, A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics. 2005; 98(4):041301-041326. doi:10.1063/1.1992666
40.    Huber ES, Hellstrom M, Probst M, Hermansson K, Broqvist P. Chemistry and Physics of Cu and H2O on ZnO Surfaces. Surface Science. 2014; 628(6):50-61. doi.1651-6214ISBN 978-91-554-9111-6urn
41.    Oba F, Togo A, Tanaka I, Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev.B. 2008; 77(24): 245-202-6,. doi.org/10.1103/PhysRevB.77.245202  
42.    SRIVASTAVA A, TYAGI N. Pressure Induced Phase Transitions in 1-D ZnO nanocrystal: Ab initio study. International Journal of Nanoscience. 2012; 11(5) 1250035-7. doi.org/10.1080/08957959.2012.686613.
43.    Kisi E, Elcombe MM. u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallogr. C. 1989; 45:1867-1870. doi.org/10.1107/S0108270189004269
44.    Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM. Stability of Polar Oxide Surfaces.physical Review Letterrs. 2001;86()3811-7.doi.org/10.1103/PhysRevLett.86.3811
45.    Dulub O, Diebold U, Kresse G. Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 2003; 90(1):016102. doi.org/10.1103/PhysRevLett.90.016102
46.    Landolt H, Borstein R, Hellwege KH, Bimberg D, Schulz M, Weiss H, Madelung O, Landolt-Bornstein numerical data and functional relationships in science and technology. Group 3, Crystal and solid state physics. Semiconductors.1982; 18(10): 1318-1318. Berline. Springer. ISBN: 3540106103 9783540106104.
47.    Song DPY, Liang C, Chen MJ, Bai QS. Molecular dynamics study on surface structure and surface energy of rutile TiO2 (110). Appl. Surf. Sic. 2009; 255(11): 5702-5708.doi.org/10.1016%2Fj.apsusc.2008.12.062
48.    Yamina B, Abderrahim A, Lazhar B, Lazhar M, Omar B, Abdelouahab O. First-principles Study of Structural and Electronic Properties of Agn and Aun (n=3-4) Clusters Adsorbed on ZnO ̅ Surface. Der Pharma Chemica, 2018; 10(2):77-81.doi. not Available

Recomonded Articles:

Author(s): Prathima Patil, S.P. Sethy, T. Sameena, K. Shailaja

DOI:         Access: Open Access Read More

Author(s): Alka Verma, Bhupesh Verma, Sunil Kumar Prajapati, Kishu Tripathi

DOI:         Access: Open Access Read More

Author(s): Naik YK, Khare A, Choudhary PL, Goel BK, Shrivastava A

DOI:         Access: Open Access Read More

Author(s): A. K. Meena, A. K. Mangal, M. M. Rao, P. Panda, G. V. Simha, S. K. Shakya, M. M. Padhi, Ramesh Babu

DOI:         Access: Open Access Read More

Author(s): S Kalidas, B Kameswari, P Devi, B Madhumitha, R Meera, NJ Merlin

DOI:         Access: Open Access Read More

Author(s): Rukhsana A. Rub, Asma Mukadam, Javed Pinjari, Ajaz Nathani, Aaisha Sagri

DOI:         Access: Open Access Read More

Author(s): Tanveer Hasan, Raza Murad Ghalib, Sayed Hasan Mehdi, P. K. Singh, S. S. R. Baqri

DOI: 10.5958/0974-4150.2017.00132.8         Access: Open Access Read More

Author(s): U. Sahoo, S. Biswal, S. Sethy, H.K.S. Kumar, M. Banerjee

DOI:         Access: Open Access Read More

Author(s): S. Begam, F. Hussain, Jaibir Singh, A. K. Sharma, D. S. N. Prasad

DOI: 10.5958/0974-4150.2018.00110.4         Access: Open Access Read More

Author(s): Nikhil D. Shirsat, S. A. Momin, Ashish A. Bandekar, Usha Sayed

DOI:         Access: Open Access Read More

Asian Journal of Research in Chemistry (AJRC) is an international, peer-reviewed journal devoted to pure and applied chemistry..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0974-4150 

Popular Articles


Recent Articles




Tags