Author(s):
Khadidja Amirat, Nadia Ziani, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia
Email(s):
abdelrahmanebouafia@gmail.com
DOI:
10.52711/0974-4150.2023.00011
Address:
Khadidja Amirat1,2,3, Nadia Ziani1,4, Souhaila Meneceur1,6, Fatiha Mebarki1,5, Abderrhmane Bouafia6*
1Renewable Energy Development Unit in Arid Zones (UDERZA), Hamma Lakhdar University of El-Oued,
El-Oued, 39000, Algeria.
2Department of Chemistry, University of Sétif 1, Ferhat Abbas, El Bez, Setif, 19000, Algeria.
3Water Treatment and Industrial Waste Recovery Laboratory, Faculty of Sciences,
Department of Chemistry, Badji Mokhtar Annaba University, BP 12, 23000, Algeria Faculty of Sciences,
4Department of Chemistry, Faculty of Sciences, Badji Mokhtar Annaba University, BP 12, 23000, Algeria.
5Material Sciences Department, University of Tamanrasset, Algeria.
6Department of Process Engineering and Petrochemistry, Faculty of Technology, University of El Oued,
39000 El-Oued, Algeria.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
A structure / lethal dose 50 (pCIC50) relationship was researched for a set of phenols while favoring a hybrid genetic algorithm (GA) / multiple linear regression (MLR) approaches to the structural parameters being computed with (E-calc) which calcula the Kier–Hall Electrotopological state indices (E- state) and Hyperchem software. Among the more than 100 simple models with two explanatory variables acquired, we chose the model with the best values of the prediction parameter (Q2) and the coefficient of determination (R2). The reliability of the proposed model has also been illustrated using various techniques of evaluation: leave-many out, cross-validation, randomization test, and validation by the test set.
pCIC50 = - 0.0835 ± (0.07006) +0.112 ± (0.007408 (logkow)2 - 0.116 ± (0.01797) s-CH3
ntot = 81 ; S= 0.3296 log unit ; Q2(%) = 74.26 ; R2 (%)= 79.24 ; F= 118.3193; P=0,000.
Cite this article:
Khadidja Amirat, Nadia Ziani, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia. Modeling of Aquatic Toxicity of a Set of Phenols in Silico. Asian Journal of Research in Chemistry. 2023; 16(1):65-70. doi: 10.52711/0974-4150.2023.00011
Cite(Electronic):
Khadidja Amirat, Nadia Ziani, Souhaila Meneceur, Fatiha Mebarki, Abderrhmane Bouafia. Modeling of Aquatic Toxicity of a Set of Phenols in Silico. Asian Journal of Research in Chemistry. 2023; 16(1):65-70. doi: 10.52711/0974-4150.2023.00011 Available on: https://www.ajrconline.org/AbstractView.aspx?PID=2023-16-1-11
REFERENCES:
1. Belaidi S. Nouvelle approche de la stéréosélectivité dans les macrolides antibiotiques dissymétriques, par la modélisation moléculaire. Batna, Université El Hadj Lakhder. Faculté des sciences; 2002.
2. Clark T. A Handbook of Computational Chemistry-J. Wiley and Sons, New York. 1985;
3. Kollman PA. Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules. Acc Chem Res [Internet]. 1996 Oct 10; 29(10):461–9. Available from: https://doi.org/10.1021/ar9500675
4. Karcher W, Devillers J. Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology. Vol. 1. Springer Science & Business Media; 1990.
5. Kier LB, Hall LH. The E-state in database analysis: the PCBs as an example. Farm [Internet]. 1999; 54(6):346–53. Available from: https://www.sciencedirect.com/science/article/pii/S0014827X99000397
6. Laxmi D, Priyadarshy S. HyperChem 6.03. Biotech Softw Internet Rep Comput Softw J Sci. 2002; 3(1):5–9.
7. Todeschini R, Consonni V, Mauri A, Pavan M. Dragon for windows (software for molecular descriptor calculations), version 5.4. Talete srl Milan, Italy. 2006;
8. Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection. J Chemom. 1992; 6(5):267–81.
9. Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M. MOBYDIGS, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm. Release 1.1 for windows. Milano; 2009.
10. Allen DM. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics [Internet]. 1974 Feb 1; 16(1):125–7. Available from: https://www.tandfonline.com/doi/abs/10.1080/00401706.1974.10489157
11. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect [Internet]. 2003 Aug 1; 111(10):1361–75. Available from: https://doi.org/10.1289/ehp.5758
12. Tropsha A, Gramatica P, Gombar VK. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb Sci [Internet]. 2003 Apr 1; 22(1):69–77. Available from: https://doi.org/10.1002/qsar.200390007
13. Kubinyi H, Hamprecht FA, Mietzner T. Three-Dimensional Quantitative Similarity−Activity Relationships (3D QSiAR) from SEAL Similarity Matrices. J Med Chem [Internet]. 1998 Jul 1; 41(14):2553–64. Available from: https://doi.org/10.1021/jm970732a
14. Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model [Internet]. 2002; 20(4):269–76. Available from: https://www.sciencedirect.com/science/article/pii/S1093326301001231
15. Efron B. Missing Data, Imputation, and the Bootstrap. J Am Stat Assoc [Internet]. 1994 Jun 1; 89(426):463–75. Available from: https://doi.org/10.1080/01621459.1994.10476768
16. Wehrens R, Putter H, Buydens LMC. The bootstrap: a tutorial. Chemom Intell Lab Syst. 2000; 54(1):35–52.
17. Zarei K, Atabati M, Kor K. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis. Bull Environ Contam Toxicol. 2014; 92(6):642–9.